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Preface 

It has been nearly four years since one of us edited the book 'Super-
Resolution Imaging' which was published by Kluwer Academic Pub
lishers. The research area of super-resolution imaging has witnessed a 
further growth since then. We see a number of papers appearing in var
ious conferences and journals on a regular basis. We also observe that 
researchers are now concentrating on finding the performance bounds 
of different methods of image super-resolution. This is a sign that this 
topic is getting a wider acceptance among the researchers in computer 
vision and that the field is gradually maturing. 

With the explosion of Internet technology and graphics engines, 
digital images are now everywhere. The image capturing tools are all 
pervading - in our pockets to inside a satellite. The imaging applications 
have also grown and many such applications demand an availability of 
high resolution images. However, all such images are not picture perfect 
They may be lacking sufficient details in the picture. This requires that 
these images be super-resolved for improved details. How to achieve this 
is what constitutes the research area of image super-resolution. 

The task of image super-resolution requires an availability of sev
eral low resolution observations of a scene. Each observation provides 
some additional information about the scene, and when these are fused 
together we obtain a high resolution description of the scene. Most of 
the researchers prefer using a moving camera to capture the scene and 
use the available motion cue. Although this is a very natural way of 
generating additional observations, the most difficult task here is to 
estimate a dense motion field between two frames at a subpixel ac
curacy. Hence we ask the question if it is at all possible to generate 
these additional observations without introducing any relative motion 



XII Preface 

among them. This would alleviate the problem of having to establish 
the feature correspondences. We explore the applicability of cues other 
than the motion cue in super-resolving a scene. This justifies the title 
of this monograph. 

Unlike in the area of motion-based super-resolution, the amount 
of published literature in this area is almost insignificant. Hence the 
current state of research in motion-free super-resolution is still in its 
primordial stage. We cannot claim that the contents of the monograph 
would relate to a firm recommendation of new technologies for imme
diate absorption by the industry. Rather, this book is meant to serve 
as a fodder for new research ideas in this area. 

The book is addressed to a broad audience. It should be of great 
value to both practitioners and researchers in the area of image process
ing and computer vision. All topics have been covered with sufficient 
details so that there is no specific pre-requisite. A basic familiarity with 
the area of image processing should suffice. Hence the students may find 
this monograph useful as a reference book. We have provided a large 
number figures to help understand the topics well. 

We would very much appreciate receiving comments and suggestions 
from the readers. 

HT Bombay, Subhasis Chaudhuri 
October 2004 Manjunath V. Joshi 
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Introduction 

Digital pictures today are all around us - on the web, on digital versatile 
discs (DVDs), on satellite systems; they are everywhere. Having these 
pictures in a digital form allows us to manipulate them the way we 
want them. Digital image processing helps us to enhance the features 
of interest and to extract useful information about the scene from the 
enhanced image. Initial ideas on image processing were used back in 
1920 for cable transmission of pictures. Since majority of the informa
tion received by a human being is visual, it was felt that integrating 
the ability to process visual information into a system would enhance 
its overall utility. Work on using computer techniques for improving 
the quality of images obtained from a space probe began at the Jet 
Propulsion Laboratory in 1964 when pictures of the moon transmitted 
by Ranger 7 were processed by a computer to correct various types of 
image distortion inherent in the on-board television camera [1]. The 
field of image processing has grown considerably during the past few 
decades with the improvement in the size, speed, and cost eff'ectiveness 
of the digital computers. Today the advancement in image processing 
hardware as well as in software is so much so that one can purchase an 
entire image processing system off the shelf. 

The field of image processing has several applications. Some of them 
include areas such as medical imaging, satellite imagery, image trans
mission, industrial inspection, surveillance, etc. In medical imaging, 
processing of images helps the doctors to make a correct diagnosis. To 
distinguish objects from similar ones such as detection of changes along 
the coast lines from satellite imagery is useful for natural resource man
agement. In the post 9/11 era, there has been a massive boost in the 
research area of visual surveillance. 
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In almost all electronic imaging applications, images with a high 
resolution are desired. There is always a demand for better quality im
ages. Availability of high quality images is crucial for several computer 
vision applications. With the high resolution imaging, one could obtain 
a better classification of regions in a multi-spectral image, a more ac
curate localization of a tumor in a medical image, or a more pleasing 
view in a high definition television (HDTV); But the resolution of an 
image is dependent on the sensor or the image acquisition device and a 
high resolution sensor is often very expensive. Also, the available cam
era resolution may not always suffice for a given application. Thus one 
has to look for image processing methods to increase the resolution. 

1.1 What is Image Resolution? 

Perhaps the most important technical concept to understand in imag
ing literature is the word resolution. Resolution is a fundamental is
sue in judging the quality of various image acquisition or processing 
systems. In its simplest form, image resolution is defined as the small
est discernible or measurable detail in a visual presentation. In optics 
the resolution of a device is determined by measuring the modulation 
transfer function (MTF) or the optical transfer function (OTF) which 
represents the response of the system to different spatial frequencies. 
MTF is not only used to give the resolution Hmit at a single point, but 
also to characterize the system to an arbitrary input [2]. Researchers 
in digital image processing and computer vision classify resolution into 
three different types. 

• Spatial Resolution: An image is made up of small picture elements 
called pixels. Spatial resolution refers to the spacing of the pixels in 
an image and is measured in pixels per unit length. The higher the 
spatial resolution, the more are the pixels in an image. High spatial 
resolution allows a clear perception of sharp details and subtle color 
transitions in an image. In case an image with high levels of details 
is not represented by a spatially dense set of pixels, the image is 
said to suffer from aliasing artifacts. For an output device such as a 
printer the spatial resolution is expressed in dots per inch (dpi). 

• Brightness Resolution: Also known as gray-level resolution, it refers 
to the number of brightness levels or gray-levels used to represent a 
pixel. The brightness resolution increases with the number of quan
tization levels used. A monochrome image is usually quantized using 
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256 levels with each level represented by 8 bits. For a color image, 
at least 24 bits are used to represent one brightness level, i.e., 8 
bits per color plane (red, green, blue). It should be noted that the 
number of gray value quantization levels is also intrinsically related 
to the spatial sampling rate. If the camera sensor has fewer quanti
zation levels, it should have a much higher spatial sampling rate to 
capture the scene intensity. This idea is quite similar to that of delta 
modulation used in communication systems and to that of dithering 
used in half-tone printing. 

• Temporal Resolution: It represents the frame rate or the number of 
frames captured per second. Higher the temporal resolution, lesser 
is the flicker observed. The lower limit on the temporal resolution 
is proportional to the amount of motion occurred between two con
secutive frames. The typical frame rate for a pleasing view is about 
25 frames per second or above. 

Another kind of resolution of interest is the spectral resolution and 
it refers to the frequency or spectral resolving power of a sensor that 
gives the bandwidth of the light (or electro-magnetic wave) frequen
cies captured by the sensor. It is defined as the smallest resolvable 
wavelength difference by the sensor. The spectral resolution plays an 
important role in satellite imaging. In this monograph, the term res
olution unequivocally refers to the spatial resolution, enhancement of 
which is the subject matter of this book. Further, we do not explore 
the inter-relationship between the brightness and spatial resolutions in 
this monograph. 

1.2 Need for Resolution Enhancement 

An image sensor or camera is a device which converts optical energy 
into an electrical signal. Modern imaging sensors are based on the 
charge-coupled device (CCD) technology, which consists of an array of 
photo-detector elements or pixels that have a voltage output propor
tional to the incident light [3]. The number of detector elements decide 
the spatial resolution of the camera. Higher the number of detector 
elements, more is the resolution. A sensor with less number of detector 
elements produces a low resolution image, giving blocky effect. This is 
because when a scene is photographed with a low resolution camera, it 
is sampled at a low spatial sampling frequency, causing aliasing effect. 
One could think of reducing the size of the photo-detector elements, 



4 1 Introduction 

thereby increasing the density and hence the samphng rate. But as the 
pixel size decreases the amount of light incident on each pixel also de
creases and this causes a shot noise [4, 5], which degrades the image 
quality. Increasing the pixel density increases the resolution but also 
causes shot noise. Thus there exists a limitation on the size of a pixel 
in a sensor and the optimal size is estimated to be about AOfim?. The 
current image sensor technology has almost reached this level. 

Another approach to increase the resolution is to increase the wafer 
size which leads to an increase in the capacitance [6]. This approach 
is not effective since an increase in capacitance causes a decrease in 
charge transfer rate. This limitation causes the image of a point light 
source to be blurred. Also there is distortion due to aliasing because 
of a low sampling rate for a low resolution sensor. Moreover in some 
applications like satellite imagery, the physical constraints make the 
sensor unrealizable for a high resolution. Thus there is a need for de
veloping post acquisition signal processing techniques to enhance the 
resolution. These techniques being post processing methods applied on 
the low resolution images, they offer flexibility as well as cost bene
fit since there is no additional hardware cost involved. However, the 
increased computational cost may be the burden that an user has to 
bear. 

1.3 Super-Resolution Concept 

The low resolution representation resulting from the lower spatial sam
pling frequency produces distortion in the image due the to loss of high 
frequency components. This causes loss of important information such 
as edges and textures. Also a degradation occurs due to the sensor point 
spread function (PSF), and optical blurring due to camera motion or 
out-of-focus. Thus an image captured with a low resolution camera 
suffers from aliasing, blurring and presence of noise. Super-resolution 
(SR) refers to the process of producing a high spatial resolution image 
from several low resolution images, thereby increasing the maximum 
spatial frequency and removing the degradations that arise during the 
image capturing process using a low resolution camera. In effect, the 
super-resolution process extrapolates the high frequency components 
and minimizes aliasing and blurring. 

As already mentioned, one way to increase the sampling rate is to 
reduce the pixel size, thereby increasing the pixel density. But an in-
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crease in pixel density causes shot noise and hence the distortion. Also 
the cost of sensor increases with the increase in pixel density. Hence 
the sensor modification is not always a practical solution for increas
ing the resolution. Thus we resort to image processing techniques to 
enhance the resolution. The advantage here is that there is no addi
tional hardware cost involved and also it off'ers a flexibility such as 
region of interest super-resolution. One of the approaches towards this 
end is simple image interpolation that can be used to increase the size 
of the image. But the quality of the interpolated image is very much 
limited due to the use of a single, aliased low resolution image. Also 
the single image interpolation is a highly ill-posed problem since there 
may exist infinitely many upsampled or expanded images which are 
consistent with the original data. A single image interpolation cannot 
recover the high frequency components lost or degraded due to the low 
resolution sampling. Some progress can be achieved by convolving the 
image with a filter designed to boost the higher frequency components. 
Unfortunately this also amplifies any noise in the image and degrades 
the quality. Hence the image interpolation methods are not considered 
as super-resolution techniques. 

In order to obtain super-resolution we must look for nonredundant 
information among the various frames in an image sequence. The most 
obvious method for this seems to be to capture multiple low resolu
tion observations of the same scene through subpixel shifts due to the 
camera motion. These subpixel shifts can occur due to the controlled 
motion in imaging systems, e.^., a landsat satellite captures images of 
the same area on the earth every eighteen days as it orbits around it. 
The same is true for uncontrolled motion, e.g.^ movements of local ob
jects or vibrating imaging systems. If the low resolution image shifts 
are integer units, then there is no additional information available from 
subsequent low resolution observations for super-resolution purposes. 
However, if they have subpixel shifts then each low resolution aliased 
frame contains additional information that can be used for high resolu
tion reconstruction. Such a technique makes the ill-posed nature of the 
problem to a better-posed one, as more data is available from multiple 
frames. 

Many researchers often term the process of super-resolving a scene 
as super-resolution restoration. It may be mentioned here that super-
resolution differs from a typical image restoration problem wherein the 
image formation model (discussed in the next section) does not consider 
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the decimation process i.e., the ahasing which is inherently present in 
the low resolution observations. Thus the size of the restored image is 
the same as that of the observed image for image restoration while it 
is dependent on the decimation factor for a super-resolved image. 

1.4 Super-Resolution Technique 

The success of any super-resolution reconstruction method is based on 
the correctness of the low resolution image formation model that relates 
the original high resolution image to the observed images. The most 
common model used is based on observations which are shifted, blurred 
and decimated (aliased) versions of the high resolution image. The ob
servation model relating a high resolution image to low resolution video 
frames is shown in Figure 1.1. 

Spatially 
continuous 
scene 

Spatial 
Sampling 

HR image : 

Continuous to 

discrete without 

aliasing 

(x,y) 

Warping 

k'" warped 
HR image 
Zu(x,y) 

LR (CCD) 
Scanning 

k ^^ observed 
LR 
frame y,^(x,y) 

Motion or Optical 

Fig. 1.1. Observation model relating a high resolution image to the observed low 
resolution frames for a static scene and a moving camera. Here HR and LR stand 
for high resolution and low resolution, respectively. 

Let US assume that the scene is static and the camera is slowly 
moving. Let us further assume that the depth variation in the scene is 
negligible compared to its distance from the camera so that the per
spective distortion due to camera motion can be neglected. In the figure 
z{x^y) is the desired high resolution image which is obtained by sam
pling the spatially continuous scene at a rate greater than or equal to 
the Nyquist rate. Here the assumption is that the continuous scene is 
bandlimited. The camera motion at the k^^ time instant during the 
exposure is modeled as pure rotation 9k and translation t^. Next, the 
blurring which may be caused by the optical system or due to relative 
motion between the camera and the scene, can be modeled as linear 
space invariant or linear space variant. One can select an appropriate 
point spread function (PSF) for the blur. These warped and blurred 
high resolution images undergo a low resolution scanning, i.e., sub-
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sampling or decimation, followed by noise addition, yielding the low 
resolution observations. 

Most of the super-resolution methods proposed in the literature use 
motion between the observed frames as a cue for estimating the high 
resolution image. This being the most intuitive approach for super-
resolution, is based on a three-stage algorithm consisting of registra
tion, interpolation and restoration. The registration step is used to find 
the relative motion between the frames with a subpixel accuracy. The 
assumption here is that all the pixels from the available frames can be 
mapped back onto the reference frame based on the motion vector infor
mation. Or in other words, there is no occlusion which is usually true if 
the depth variation on the scene is planer. Next, the interpolation onto 
a uniform grid is done to obtain a uniformly spaced upsampled image. 
Once the upsampled image on uniformly spaced grid points is obtained, 
restoration is applied to remove the efi'ects of aliasing and blurring and 
to reduce noise. The restoration can be performed by using any decon-
volution algorithm that considers the presence of an additive noise. A 
scheme for constructing the high resolution frame from multiple low 
resolution frames is shown in Figure 1.2 [7]. Here the low resolution 

1̂ 
yi " 

p̂ 

I 

Registration 

or 

Motion Estimation I 
Interpolation 
onto a 
high resolution 
grid 

Restoration 
For 
blur and noise 
removal 

Super-resolved 
Image z 

Fig. 1.2. Scheme for super-resolution from multiple subpixel shifted observations. 

observations 2/1,2/2 * * * ?yp sire used as input to the motion estimation 
module. The registered images are then interpolated onto a high resolu
tion grid, which is then post-processed through restoration to generate 
a super-resolved image. 

1.5 Tour of the Book 

Nonredundant information among the low resolution frames is the key 
to super-resolution. Each low resolution frame provides a different 
"look" of the same scene. In order to get nonredundant information 
from different frames, most of the multi-frame methods use motion 
as a cue, and the super-resolution restoration is obtained by using the 
scheme shown in Figure 1.2. Here the motion information serves as a cue 
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to solve the super-resolution problem. However, this method being a 2D 
dense feature matching technique, it requires an accurate registration 
or motion estimation. But the task of accurate registration is dependent 
on the observed image data and it requires that the images should not 
contain any degradation. Also for better restoration, the shifts between 
the images, i.e., the registration must be accurately known. Thus, the 
registration and restoration are interdependent and it is a difficult task 
to obtain an accurate registration. It requires a considerable computa
tional burden to obtain an accurate registration. Thus the performance 
of motion-based super-resolution algorithms will ultimately be limited 
by the effectiveness of motion estimation and modeling. For a proper 
super-resolution, the estimated motion field should be of high resolu
tion. However, these high resolution fields should be estimated from the 
low resolution image data. Another problem of concern with motion-
based super-resolution methods is that they do not consider the 3D 
structure of the scene being imaged although such information is in
herently available. Since the structure of an object is embedded in the 
images in various forms such as stereo disparity, it limits the quality 
of the super-resolved image and its applicability in 3D computer vision 
problems. Also the motion-based super-resolution methods assume that 
the low resolution observations are all at the same spatial resolution. 

Theoretically, nonredundant information about the scene can also be 
obtained by using different camera parameters or with different lighting 
conditions while capturing the scene without effecting a relative scene 
motion [8]. To this end researchers have explored the possibility of 
using cues other than the motion cue for super-resolution purposes. In 
[9], Rajan and Chaudhuri have successfully demonstrated the use of 
blur as a cue for super-resolving the intensity field. A similar idea of 
using the blur for image super-resolution was also proposed by Elad 
and Feuer [10]. The usefulness of the approach lies in the fact that 
there is no relative motion between the camera and the scene. Hence 
there is no requirement of image registration. This motivates us to use 
cues other than the motion cue for super-resolution. To this end we 
consider multiple frames of the same scene in which each frame does 
contain some additional information, although there is no relative shift 
between frames. The primary question we ask is that can we have image 
super-resolution without having to register images? We demonstrate in 
this monograph that it is, indeed, possible to perform image super-
resolution without having to use the motion cue. We call this class 
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of super-resolution techniques as motion-free super-resolution method. 
We discuss various techniques that we have developed over the last 
few years under this class. This justifies the title of the book. A quick 
summary of the various topics discussed in this monograph is as follows. 

• In chapter 2, we discuss the current literature on super-resolution 
for both motion-based and motion-free methods. 

• In chapter 3, we consider the case where the observations are 
blurred, i.e., we use the blur cue instead of the motion cue. A super-
resolution technique is presented in which a sequence of blurred, 
decimated and noisy versions of an ideal high resolution image is 
used to generate a super-resolved image. The depth related defocus 
blur provides the cue. This is a natural cue in any real aperture 
(non-pin-hole) imaging system. Multiple observations can be ob
tained by varying the camera parameters. We not only generate the 
super-resolved intensity map but the unknown depth map is also 
recovered at a finer grid. The super-resolved image and the depth 
map expressed in terms of the space variant blur parameter, are in
dividually modeled as separate Markov random fields (MRFs). The 
max:imum a posteriori (MAP) estimate of these fields i.e., the super-
resolved image and the depth are recovered through optimization of 
an appropriate cost function. Since the blur is related to unknown 
scene depth at a point, in eflFect, we solve the space varying blind 
deconvolution problem in this chapter. 

• Next we consider the use of photometric cue for super-resolution, 
and explore the possibility of using the same for the estimation of 
both super-resolved image and the depth map. The observations are 
images captured under different light source positions keeping both 
the camera and the object stationary. We obtain the super-resolved 
image and the spatially enhanced structure simultaneously. In addi
tion, we recover the super-resolved albedo of the surface. Since there 
is no relative motion between the camera and the scene there is no 
correspondence problem. The high resolution image is obtained not 
only for a particularly given light source position but also for an 
arbitrary virtual light source direction. In addition we can also per
form a high resolution rendering of a scene. Our work here is initially 
based on the generalized interpolation scheme for super-resolution of 
the image intensity map proposed in [11]. However this method fails 
to achieve good results as it does not consider several issues while 
utilizing the photometric cue. No contextual constraints are used 
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in [11], which are very much necessary in the interpretation of the 
visual information. We model the high resolution image, the struc
ture of the scene and the albedo of the surface as separate Markov 
random fields in order to take care of the contextual dependency. In 
practice the assumed reflectance model may differ significantly from 
the true model and this may lead to errors while reconstructing the 
surface. In order to circumvent this problem we reproject the re
constructed high resolution image on the low resolution observation 
so that they match well. We also use the surface integrability con
straint which has to be satisfied by any physically valid surface. An 
optimization technique which incorporates the different constraints 
is developed to solve the problem. 

• It was mentioned earlier that the super-resolution (SR) problem is 
equivalent to image restoration along with image upsampling. Most 
of the motion-based SR methods assume the blur PSF to be known. 
In order to show how the photometric stereo can also be used for 
blind restoration, we solve the problem of simultaneous estimation 
of scene structure along with restoration of the images from blurred 
photometric observations in chapter 5. In the existing literature on 
shape from shading the researchers have treated the problem of 
shape estimation without considering the blur introduced by the 
camera. They assume a pin-hole model that inherently implies that 
there is no camera blur during observations. However, when one cap
tures the images with a camera, the degradation in the form of blur 
and noise is often present in these observed images. The blur could 
happen due to a variety of reasons such as improper focus setting 
or camera jitter. It is natural that the variations in image intensity 
due to camera blur affects the estimates of the surface shape. Thus, 
the estimated shape differs from the true shape in spite of possibly 
having the knowledge of the true surface refiectance model. This 
limits the applicability of these techniques in 3D computer vision 
problems. This motivates us to restore the images as well, while 
recovering the structure. We estimate the different fields (surface 
gradients, albedo, and image intensity) when the blur is unknown. 
Since the camera blur is not known, in addition, we estimate the 
point spread function (PSF) of the blur which caused the degrada
tion. Thus the problem can be classified as a joint blind restoration 
and surface recovery problem. We show that the entire problem can 
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be expressed as a simple problem of regularization and can be solved 
iteratively using existing mathematical tools. 
In the recent years theoretical as well as practical advances have 
been made in the field of computer vision by using new techniques 
which involve learning. Learning is basically used to enhance the 
performance of a system. The ability to learn certain aspects or char
acteristics of a scene from an image plays an important role in solv
ing many of the computer vision problems. Learning based methods 
have been applied in variety of areas such as segmentation, feature 
extraction and object recognition. Researchers have applied learning 
based methods for solving super-resolution problem as well. Thus 
after having considered the photometric cue for super-resolution we 
show how the super-resolution reconstruction can be obtained us
ing a learning based approach. Here a single low resolution image 
serves as the observation, but we assume the availability of a num
ber of high resolution training images of various different kinds of 
scenes. We observe that edges in an image are the regions where the 
high frequency components are restricted. An attempt to upsample 
an image shows a noticeable degradation at edges due to blurring. 
Hence we consider edge primitives at the low resolution observation 
and try to learn them locally at the higher resolution from the high 
resolution training data set. Since the wavelets are best suited for 
analyzing a signal with discontinuities locally at different scales, we 
make use of the edge representation in the wavelet domain for the 
purpose of learning the missing high frequency components in the 
unknown high resolution image. The unknown wavelet coefficients 
at finer scales of the high resolution image are learnt from the train
ing set and the image thus obtained in the wavelet domain is used 
for further regularization to remove possible blockiness in the the 
super-resolved image. 

In the previous chapter we learnt the high frequency details at a 
given location locally from the high resolution database. In chap
ter 7, we explore the usefulness of learning features globally from 
the training set. This requires that we restrict the input image to 
a given class of object (say, a face or a fingerprint image) and that 
the training data to the same class. We use a principal component 
analysis (PCA)-based method for image super-resolution for a class 
of images using the concept of generalized interpolation defined in 
chapter 4. The image is decomposed into principal components to 
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obtain eigen-images. A set of low resolution images is used for the 
same. The given low resolution image is then projected onto these 
eigen-images to obtain eigen coefficients. The eigen-images are in
terpolated using a suitable interpolation technique and the linear 
combination using the eigen coefficients yields the desired high res
olution image. Unlike learning of the features locally, the global 
learning process is extremely fast, as the learnt eigen-images are all 
precomputed, however the domain of apphcability is restricted to a 
given class of object only. 

• Finally in chapter 8 we develop a motion-free super-resolution tech
nique using zoom as a cue. Researchers have used zoom cue to 
solve computer vision problems which include depth estimation 
[12, 13, 14], minimization of view degeneracies [15], and zoom track
ing [16]. We show that the zoom cue can'also be used to solve 
the super-resolution problem by using the existing mathematical 
tools. This is because the amount of aliasing differs with zooming. 
When one captures the images with different zoom settings, the least 
zoomed entire area of the scene is represented by a limited number 
of pixels, i.e., it is sampled with a very low spatial frequency and 
the most zoomed image at a higher sampling rate. Thus one can 
use zoom as an effective cue for generating a high resolution im
age at the lesser zoomed area of a scene. Our approach generates 
a super-resolved image of the entire scene although only a part of 
the observed scene has multiple observations. In effect what we do 
is as follows. If the wide angle view corresponds to a field of view 
of a^, and the most zoomed view corresponds to a field of view of 
f3^ (where a > /?), we generate a picture of the a^ field of view at a 
spatial resolution comparable to ^^ field of view. 

The observations here are the images of the same scene captured 
with different zoom settings. We consider the most zoomed obser
vation as the super-resolved one and obtain the super-resolution of 
the entire scene which is at a low resolution. There are no spatial 
shifts between the observations but the area of the scene captured 
is different with different zoom settings. We not only obtain the 
super-resolution for known integer zoom factors, but also for un
known arbitrary zooms. This is done by estimating the zoom factors 
among the different observations. The zoom factors are estimated 
by using a hierarchical cross-correlation technique. We model the 
super-resolved image as a Markov random field (MRF) and a maxi-
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mum a posteriori (MAP) estimation technique is used to obtain the 
super-resolution. Since our objective is to reconstruct the high fre
quency details by data fusion i.e., increase the sampling density by 
using a number of observations, we should naturally attempt to pre
serve discontinuities (i.e., those features that carry high frequency 
information). To this end we consider the preservation of these dis
continuities in the form of sudden changes in the intensity values by 
using appropriate hne fields. 

After having considered the case where the prior MRF parame
ters are selected on an adhoc basis, our next step is to learn these 
parameters so that the computational time complexity can be very 
much reduced as one need not spend time in choosing the appro
priate model parameters manually on trial and error basis. Thus, 
learning represents the next part of our proposition. Since, we cap
ture images of a static scene with different zoom settings, the most 
zoomed observation has the highest resolution. We learn the param
eters of the super-resolved image from the most zoomed observation 
and use the same to super-resolve the rest of the part in the least 
zoomed entire scene. The high resolution field is modeled as a homo
geneous MRF. The learnt field parameter set is then used as priors 
while super-resolving the observations. We make use of the MAP 
formulation with MRF prior to derive the cost function and the min
imization is done using the gradient descent approach. However, the 
estimation of the MRF model parameters is a difficult task as most 
of the methods are computationally expensive. We use a relatively 
faster learning algorithm known as the maximum pseudo-likelihood 
(MPL) estimator to estimate the model parameters. 

Although the priors in the form of MRF model parameters con
stitute a most general statistical model, and capture the local de
pendencies very well, the computational burden goes up drastically 
when one needs to use a larger neighborhood structure in order to 
capture the spatial dependency well. This motivates us to use a 
simultaneous autoregressive model (SAR) as the prior, which is a 
linear model. Although this represents a weaker model, the associ
ated computational requirement is negligible. Here we use a larger 
neighborhood to capture the local dependency. An iterative max
imum likehhood (ML) estimator is used for SAR parameter esti
mation. A suitable regularization scheme is employed to obtain the 
high resolution image with the SAR model prior. 
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• The book concludes in chapter 9 which also includes future issues 
for further research in the area of super-resolution. 

We have carried out extensive experiments on real as well as sim
ulated images. The results obtained show perceptual improvements as 
well as quantifiable gains in terms of mean squared error (MSE) or peak 
signal to noise ratio (PSNR). Wherever appropriate we have provided 
these figures of merit to demonstrate the usefulness of the methods 
discussed. We also highlight the demerits of these methods so that the 
practitioners in this area can have a better insight into these methods 
as regards their applicability. 

During the course of evolution in research in this specific area, it 
is quite natural that some of these works have earlier been reported 
in a few conferences and journals. This monograph derives parts of its 
contents from these publications [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 
27]. 



Research on Image Super-Resolution 

Many researchers have tackled the super-resolution reconstruction prob
lem for both still images and video. Although the super-resolution re
construction techniques for video are often extensions to still image 
super-resolution, many different approaches have also been proposed. 
In general, based on the type of cues used, the super-resolution meth
ods can be classified into two categories: motion-based techniques and 
the motion-free approaches. Motion-based techniques use the relative 
motion between different low resolution observations as a cue in esti
mating the high resolution image, while motion-free super-resolution 
techniques may use cues such as blur, zoom, and shading. These meth
ods do not require observations with relative motion among them. Some 
researchers have also attempted to solve the super-resolution recon
struction problem without considering any specific cue, but by using 
an ensemble of images as a training set in order to learn the required 
information for resolution enhancement. 

Different methods to obtain super-resolution include nonuniform in
terpolation approach, frequency domain approach, and regularization 
based reconstruction technique which may be either deterministic or 
stochastic. Few other existing approaches include projection onto con
vex sets, iterative back projection method, adaptive filtering method, 
etc. Most of the super-resolution techniques discussed in the literature 
are based on the motion cue, i.e., using the subpixel shifts among the 
observations. A few researchers have also tackled the super-resolution 
problem without using the motion cue. In this chapter we review the lit
erature on super-resolution reconstruction for motion-based as well as 
for mot ion-free techniques. A comprehensive survey on super-resolution 
imaging can also be found in [28, 29]. 
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2.1 Motion-Based Super-Resolution 

The super-resolution idea was first proposed by Tsai and Huang [30]. 
They used the frequency domain approach to demonstrate the ability 
to reconstruct a single improved resolution image from several down-
sampled, noise free versions of it. A frequency domain observation 
model was defined for this problem which considered only the glob
ally shifted versions of the same scene. Their approach is based on the 
following principles: 

• the shifting property of the Fourier transform, 
• the aliasing relationship between the continuous Fourier transform 

of the original image and the discrete Fourier transform (DFT) of 
the observed low resolution frames, and 

• the assumption that the original high resolution image is bandlim-
ited. 

Kim et al discuss a recursive algorithm, also in the frequency do
main, for the restoration of super-resolution images from noisy and 
blurred observations [31]. They consider the same blur and noise charac
teristics for all the low resolution observations. Their recursive approach 
combines the two steps of filtering and reconstruction. The filtering op
eration on the registered images compensates for the degradation and 
noise, and the reconstruction step estimates the image samples on a 
high resolution grid in order to obtain the super-resolved image. Kim 
and Su [32] consider different amounts of blur for each low resolution 
image and used the Tikhonov regularization to obtain the solution of 
an inconsistent set of linear equations. 

The disadvantage with the frequency domain approach lies on the 
restrictions imposed on the observation model. One may consider only 
a translational motion and a linear space invariant (LSI) blur. Also, 
since the data is uncorrelated in the frequency domain, it is difficult to 
apply apriori knowledge about the data for the purpose of regulariza-
tion. Nonetheless, it was a good beginning and very soon researchers 
started looking at the problem in the spatial domain also. Needless 
to say, researchers have also explored the use of other types of image 
transforms to achieve super-resolution. For example, a discrete cosine 
transform (DOT) based method instead of DFT has been proposed by 
Rhee and Kang [33]. 

A minimum mean squared error approach for multiple image restora
tion, followed by interpolation of the restored images into a single high 
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resolution image has been presented in [34]. Ur and Gross use the Pa-
pouhs and Brown generahzed sampling theorem [35],[36] to obtain an 
improved resolution picture from an ensemble of spatially shifted ob
servations [37]. These shifts are assumed to be known by the authors. 
A recursive total least squares method for super-resolution reconstruc
tion to reduce the effects of registration error is discussed in [38]. All 
the above super-resolution restoration methods are restricted either to 
a globally uniform translational displacement between the measured 
images, or an LSI blur, and a homogeneous additive noise. 

A different approach to the super-resolution restoration problem 
was suggested by Peleg and his co-authors [39, 40, 41], based on the 
iterative back projection (IBP) method adapted from computer aided 
tomography. This method starts with an initial guess of the output 
image, projects the temporary result to the measurements (simulating 
them), and updates the temporary guess according to this simulation 
error. A back projection kernel determines the contribution of the error 
to the reconstructed image at each iteration. The disadvantage of IBP 
is that it has no unique solution as it does not attempt to involve prior 
constraints. A set theoretic approach to the super-resolution restoration 
problem was suggested in [42]. The main result there is the ability to 
define convex sets which represent tight constraints on the image to be 
restored. Having defined such constraints it is straightforward to apply 
the projections onto convex sets (POCS) method, which was originally 
suggested by Stark and Oskoui [4]. The POCS based approach describes 
an alternative way to incorporating the prior knowledge about the so
lution into the super-resolution reconstruction process. According to 
this method, the solution is restricted to be a member of a closed con
vex set that is defined as a set of vectors which satisfy a user specified 
property. If the constraint sets have nonempty intersection, then a so
lution can be found by alternately projecting onto the convex sets. All 
these methods mentioned above are not restricted to having a specific 
motion characteristic. They can handle smooth motion, linear space 
variant blur, and non-homogeneous additive noise. 

Ng et al develop a regularized constrained total least squares 
(RCTLS) solution to obtain a high resolution image in [43]. They con
sider the presence of perturbation errors of displacements around the 
ideal subpixel locations in addition to sensor noise. The superiority of 
the approach over conventional least squares based approach is sub
stantiated through examples. The analysis of the effect of displacement 
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errors on the convergence rate of the iterative approach for solving the 
transform based preconditioned system of equations during high reso
lution image reconstruction with multiple sensors has been carried out 
in [44]. It is established that the use of MAP, L2'-noim. or ili-norm 
based regularization functional leads to a linear convergence of the 
conjugate gradient descent method in terms of the displacement errors 
caused by the imperfect subpixel localization. Bose et al [45] point out 
the important role of the regularization parameter and suggest the use 
of a constrained least squares (CLS) method for super-resolution re
construction which generates the optimum value of the regularization 
parameter, using the L-curve method [46]. 

In [47] the authors use a maximum a posteriori (MAP) framework 
for jointly estimating the registration parameters and the high reso
lution image for severely aliased observations. They use an iterative, 
cyclic coordinate-descent optimization technique to update the regis
tration parameters. A similar idea of joint estimation applied to infra
red imagery is presented in [48]. The high resolution estimate of the 
image is obtained by minimizing a regularized cost function based on 
the observation model. It is also shown that with a proper choice of tun
ing parameter, the algorithm exhibits robustness in presence of noise. 
Both the gradient descent and the conjugate gradient descent optimiza
tion techniques are used to minimize the cost function. An expectation 
maximization (EM) based algorithm solved in the frequency domain 
in order to simultaneously estimate the super-resolved image, the blur 
and the registration parameters is described in [49]. All these methods 
alternately estimate the high resolution image and the motion fields for 
an improved accuracy. 

A MAP estimator with Huber-Markov random field (HMRF) prior 
is described by Schultz and Stevenson in [50] for improving the image 
resolution. Here a discontinuity preserving stabilizing functional is used 
for the preservation of edges. In HMRF, an edge preserving potential 
function is used to define the prior constraint. The potential function 
is given by 

x^, if \x\ < a 
^ ^ )2a\x\ — a^^ otherwise 

where x is the finite difierence approximation of the first order deriva
tive of the image at each pixel. HMRF is an example of a convex but 
nonquadratic prior. The purpose of making the prior linearly increasing 
beyond the threshold \x\ > a is to partly reduce the rate of growth in 
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the cost function when there is an edge between two pixels. The idea is 
quite similar to the concept of an M-estimator prevalent in the area of 
robust regression analysis. In the paper two separate algorithms have 
been derived: a constrained optimization method for a noise free image 
reconstruction, and an unconstrained optimization algorithm for im
age data containing Gaussian noise. The gradient projection algorithm 
has been used to minimize the cost derived from a noise free case and 
a gradient descent optimization is used for the noise corrupted case. 
Till date this method is probably the most popular one among the re
searchers as we notice that most of the currently proposed approaches 
compare their performances with the results obtained with an HMRF 
prior. Since all these methods claim a superiority over the HMRF based 
method, it is probably safe to state that the HMRF method, indeed, 
yields a reasonably accurate result. 

In many resolution enhancement applications, the blurring process 
i.e., the point spread function (PSF) of the imaging system, is not 
known. Nguyen et al [51] propose a technique for parametric blur iden
tification and regularization based on the generalized cross-validation 
(GOV) theory. The idea of cross-validation is to divide the data set into 
two parts; one part is used to construct an approximate solution, and 
the other is used to validate that approximation. They propose approx
imation techniques based on the Lanczos algorithm and Gauss quadra
ture theory for reducing the computational complexities of GCV. They 
solve a multivariate nonlinear minimization problem for the unknown 
parameters. They have also proposed circulant block preconditioners to 
accelerate the conjugate gradient descent (CG) method while solving 
the Tikhonov-regularized super-resolution problem [52]. Precondition
ing is a process used to transform the original system into one with the 
same solution, but which can be solved more quickly by the iterative 
solver. They use specific preconditioners such that the preconditioned 
system has eigenvalues clustered around unity which makes CG method 
to converge rapidly. 

Elad and Feuer [10] propose a unified methodology for super-
resolution restoration from several geometrically warped, blurred, noisy 
and down-sampled observations by combining maximum likelihood 
(ML), MAP and POCS approaches. The proposed super-resolution ap
proach is general but assumes explicitly a linear space variant blur, 
and an additive Gaussian noise. In addition to the motion-based super-
resolution the authors also discuss the condition for motion-free super-
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resolution imaging when the observations are captured with different 
amounts of defocus blur even when both the camera and the object 
are stationary. This issue will be taken up in the next section. An 
adaptive filtering approach to super-resolution restoration is described 
by the same authors in [53] using the least mean squares (LMS) and 
the pseudo-recursive least squares (RLS) algorithms. Both the meth
ods have been demonstrated with and without regularization. They 
exploit the properties of the operations involved in their previous work 
[10] and develop a fast super-resolution algorithm in [54] for a purely 
translational motion and space invariant blur, assuming them to be 
the same for all the images. The approach consists of deblurring and 
measurement fusion which is shown to be solvable using a non-iterative 
algorithm. Similarly two fast non-iterative algorithms for image super-
resolution based on Choleskey decomposition have been developed by 
Jorge and Ferreira [55]. They use the spatial domain formulation and 
the frequency domain approach. The spatial domain approach leads to 
a set of linear equations for the unknown pixels, while the frequency 
domain approach leads to equations for the unknown DFT coefficients. 
An additional inverse Fourier transform is used to obtain the required 
image while working in the frequency domain. 

A computationally fast super-resolution algorithm based on the pre-
conditioner using the motion adaptive relaxation parameters is consid
ered in [56]. The proposed algorithm can be implemented in real time 
by updating the motion compensated low resolution frame at each time 
instant by using the preconditioner which increases the converges rate. 
Thus the speed up operation is achieved through system precondition
ing as discussed earlier. This method can be applied to a general image 
sequence with differently moving objects, thus can handle local varia
tions in the motion parameters. Farsiu et al propose a fast and ro
bust super-resolution algorithm based on Li-norm for both data fitting 
term and the prior term and show that it performs better with and 
even without the outliers present in the data [57]. The robustness is 
achieved by limiting the contribution of the highly erroneous outlier 
data through the use of Li-norm. Quite naturally, we may replace the 
Li-norm by any appropriate weight function W{x) as it is commonly 
done in M-estimator. The authors in [58] investigate the performance of 
super-resolution algorithms using different potential functions such as 
convex, nonconvex, bounded, and the unbounded as a prior in the cost 
function and compare their performance on synthetic and real images. 
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They evaluate the performances of three different potential functions 
given below proposed, respectively, by Charbonnier [59], Hebert and 
Leahy [60], and Geman and Reynolds [61]. 

i 7 ( x ) - 2 ^ ( l + a : 2 ) - 2 , 

[/(re) = l o g ( l + a;^), and 

where x is the finite difference approximation of the first order deriva
tive of the image at each pixel. Different optimization methods have 
been used for each prior model. 

Edges are typically the most important features in an image. For 
a homogeneous region, any kind of interpolation technique for image 
upsampling would suflSce. However, one must be careful while upsam-
pling the regions having edges as we would like them to be sharp in the 
high resolution data. Chiang and Boult [62] use edge models and a local 
blur estimate to develop an edge-based super-resolution algorithm. An 
image consistent reconstruction algorithm is used which gives the exact 
solution for some input function which, according to the sensor model, 
would have generated the measured input. Rather than obtaining the 
super-resolution by fusion of all the images together they choose one 
of the images from the image sequence and then fuse together all the 
edges from the other images. This requires that the reference image be 
re-estimated and scaled up based on the edge models and local blur 
estimation. Thus they mitigate the problem arising due to illumination 
variation during image capture since the edge positions are less sensitive 
to lighting variations. They have also applied image warping to recon
struct a high resolution image [63] which is based on a concept called 
integrating resampler [64] that warps the image subject to some con
straints. Here the upsampled images are combined using the median, 
and the resultant image is convolved to remove blur, with a high pass 
filter. Similarly, a robust median-based estimator is used in an iterative 
process to achieve the super-resolution in [65]. This approach discards 
the measurements which are inconsistent with the imaging model, thus 
increasing the resolution even in regions having the outliers. 

An image super-resolution technique based on the wavelet domain 
hidden Markov tree (HMT) model as a prior is proposed by Zhao et al 
[66]. The wavelet domain HMT characterizes the statistical properties 
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of the real image. Here the authors use the motion cue, but unhke 
using the Huber-MRF prior, they use the HMT prior. They formulate 
the problem as a constrained optimization problem and solve it using 
a cyclic optimization procedure. 

All the methods discussed so far do use the motion cue for super-
resolution, and in order to do that they need to actually compute the 
motion parameters. At this point some researchers may feel that since 
most of the available video sequences are already MPEG compressed, 
decompression of the video and then motion estimation is a wastage 
of time. The MPEG data already has the motion vectors in the bit 
stream. Can these motion vectors be used without fully decompressing 
the MPEG data? This problem of recovering a high resolution image 
from a sequence of DCT compressed images is addressed in [67]. It may 
be noted that the MPEG motion vectors may not always give us the 
true motion field. Also, the motion vectors are not dense. It is spec
ified over a macro-block. So the authors recover the high resolution 
image using an iterative method considering the effects of quantiza
tion (residual) noise as well as registration errors, both modeled as 
zero mean additive Gaussian noise. A regularization functional is in
troduced not only to reflect the relative amount of registration error 
but also to determine the regularization parameter. Segall et al esti
mate the high resolution image as well as subpixel displacements from 
compressed image observations [68]. They formulate the problem in a 
Bayesian framework and use the iterative cyclic coordinate descent ap
proach for the joint estimation. Here the pixel intensities are no longer 
the observations, instead motion vectors and quantized transform co
efficients are provided to the recovery algorithm. 

There have been very few publications in the area of quantifying 
the performance of motion-based super-resolution methods. Lin and 
Shum determine the fundamental limits of reconstruction-based super-
resolution algorithms and obtain the super-resolution limits from the 
conditioning analysis of the coeflBcient matrix [69]. They prove that 
fundamental limits do exist for reconstruction based super-resolution 
algorithms where a number of low resolution, subpixel displaced frames 
are used to estimate a high resolution image. They discuss two extreme 
cases and find that the practical limit for magnification is 1.6, if the 
registration and the noise removal is not good enough. 

Let us now discuss some of the application specific super-resolution 
schemes. There has been an effort in the area of astrophysics for improv-
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ing the image resolution of celestial objects. In [70] authors use a series 
of short-exposure images taken concurrently with a corresponding set 
of images of a guidestar and obtain a maximum-likelihood estimate of 
the undistorted image. Yang and Parvin [71] compute the dense map 
of feature velocities from lower resolution data and project them onto 
the corresponding high resolution data. The proposed technique is ap
plied to measurement of sea surface temperature. The super-resolution 
principle has been applied to the face recognition systems as well in 
[72, 73]. They apply the super-resolution technique after dimensional
ity reduction to a set of inaccurate feature vectors of a subject, and 
their reconstruction algorithm estimates the true feature vector. Au
thors in [74] have proposed a MAP estimator based on the Huber prior 
for enhancing text images. The authors map the problem as that of 
a total variation and super-resolve the text. They consider images of 
scenes for which the point to point image transformation is a planar 
projective one. 

It is now worth digressing a bit to look into the problem of image 
mosaicing. Mosaicing works on the principle that there are overlapping 
regions in the successive images so that interest points can be recovered 
in these regions and subsequently matched to compute the homogra-
phy. Once the homography is computed, images are stitched together 
to obtain a high field of view mosaic. But while stitching these images 
across the overlapping regions, we throw away the additional informa
tion available from multiple views as redundant. This apparently redun
dant information is, however, the ideal cue for image super-resolution. 
The complementary set of information can be used for super-mosaicing 
purposes, [75] i.e., to build a high resolution mosaic. An efficient super-
resolution algorithm with application to panoramic mosaics has been 
proposed by Zomet and Peleg [76]. The method preserves the geome
try of the original mosaic and improves spatial resolution. Capel and 
Zisserman have proposed a technique for automated mosaicing with 
super-resolution zoom in which a region of the mosaic can be viewed 
at a resolution higher than any of the original frames by fusing in
formation from several views of a planar surface in order to estimate 
its texture [77]. Similarly, in [75], Bhosle et al. use the motion cue for 
super-resolution of a mosaic. They use the overlap among the observed 
images to increase the spatial resolution of the mosaic and to reduce 
the noise. In order to illustrate this, we show in Figure 2.1 a panoramic 
mosaic of a building constructed from 36 overlapped observations. The 
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corresponding super-mosaic is displayed in Figure 2.2. One can notice 
an improvement in bringing out some of the finer details here. 

^ i . ^ - ^ ^ 

Fig. 2 .1. Example of a low resolution panoramic mosaic. 

Fig. 2.2. Illustration of a super-mosaic constructed from the same set of observa
tions used in obtaining Figure 2.1. 

Now we discuss some of the research efforts in super-resolving a 
video sequence. Most of the super-resolution algorithms applicable to 
video are extensions of their single frame counterpart. Authors in [78] 
describe a complete model of video acquisition with an arbitrary input 
sampling lattice and a non-zero exposure time. They use the theory of 
POCS to reconstruct super-resolution still images or video frames from 
a low resolution time sequence of images. They restrict both the sensor 
blur and the focus blur to be constant during the exposure. Their video 
formation model includes an arbitrary space time lattice in order to ob
tain the sampled video signal. A hierarchical block matching algorithm 
is used to estimate the nonuniform translational motion between the 
low resolution images and the reference image. The motion model is 
incorporated into the video formation model to establish a linear space 
variant (LSV) relationship between the low resolution images and the 
desired super-resolved image at an arbitrary time t. By appropriately 
setting the values of t, a single super-resolved still image or a super-
resolved video is reconstructed. Eren et al extended the technique in 
[78] to scenes with multiple moving objects by introducing the concepts 
of validity maps and segmentation maps and by using the POCS frame
work [79]. The validity map disables projections based on observations 
with inaccurate motion information for a robust reconstruction when
ever there is error in motion estimation. The segmentation map enables 
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an object-based processing where a more accurate motion model can 
be utilized to improve the quality of reconstructed images. 

In [80] a technique for robust deinterlacing for creating high quality 
stills from an interlaced video is presented. A method for motion com
pensated deinterlacing that combines a motion trajectory filter for re
moving the dominant motion such as camera zoom, pan and jitter, with 
motion detection to remove artifacts caused by independently moving 
objects has been discussed. The motion detection method employs an 
adaptive thresholding scheme that simultaneously suppresses aliasing 
artifacts and artifacts caused by independently moving objects. 

Schultz and Stevenson use the hierarchical block matching algo
rithm to estimate the subpixel displacement vectors and then solve the 
problem of estimating the high resolution frame given a low resolution 
sequence by formulating it as a Bayesian MAP estimation with Huber-
Markov random field (HMRF) prior, resulting in a constrained opti
mization problem with a unique minimum [81]. The super-resolution 
video enhancement technique proposed by Shah and Zakhor consider 
the fact that the motion estimates used in the reconstruction process 
will be inaccurate [82]. To this end their algorithm finds a set of candi
date motion estimates instead of a single motion vector for each pixel, 
and then both the luminance and the chrominance values are used 
to compute the dense motion field with subpixel accuracy. The high 
resolution frame is restored subsequently by a method based on the 
Landweber algorithm. 

Researchers have also used appropriate smoothness constraints over 
successive frames. Hong et al define a multiple input smoothing convex 
functional and use it to obtain a globally optimal high resolution video 
sequence [83]. An iterative algorithm for resolution enhancement of 
a monochrome or a color video sequence using motion compensation 
has been presented in [84]. The choice of which motion estimator to use 
versus how the final estimates are obtained is weighed to see which issue 
is more critical in improving the estimated high resolution sequence. 
A single motion field is estimated using the three color fields. They 
use two diff'erent approaches for motion estimation, which recover the 
motion in two steps. In the first step, a displacement vector field (DVF) 
is estimated for each channel. In the second step, these three DVFs 
are combined via data fusion (merging the individual motion fields) 
to yield a single DVF. The straightforward examples of data fusion 
are the use of a prespecified vector corresponding to a particular color 
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channel or the vector mean or the vector median. The estimated high 
resolution images using the block matching motion estimators have 
been compared to those obtained by using a pixel recursive scheme. 

Altunbasak et al. [85] have proposed a motion-compensated, trans
form domain super-resolution procedure for creating high quality video 
or still images that directly incorporates the transform domain quanti
zation information by working in the compressed bit stream. They ap
ply this new formulation to MPEG-compressed video. In [86], a method 
for simultaneously estimating the high resolution image frames and the 
corresponding motion fields from a compressed low resolution video 
sequence is presented. The algorithm incorporates knowledge of the 
spatio-temporal correlation between low and high resolution images to 
estimate the original high resolution sequence from the degraded low 
resolution observation. The idea has been further extended to introduce 
additional high resolution frames in between two low resolution input 
frames to obtain a high resolution, slow motion sequencing of a given 
video [87]. The authors develop the above system for the purpose of 
post-facto video surveillance, i.e., to find what exactly had happened 
from the stored video. 

Authors in [88] propose a high-speed super-resolution algorithm us
ing the generalization of Papoulis' sampling theorem for multichannel 
data with applications to super-resolving video sequences. They esti
mate the point spread function (PSF) for each frame and use the same 
for super-resolution. Borman and Stevenson [89] present a MAP ap
proach for multi-frame super-resolution of a video sequence using the 
spatial as well as temporal constraints. The spatio-temporal constraint 
is imposed by using a motion trajectory compensated MRF model, in 
which the Gibbs distribution is dependent on pixel variation along the 
motion trajectory. 

Most of the research works discussed so far assume that the low 
resolution image formation model illustrated in Figure 1.1, is indeed 
correct. Model uncertainties are not considered. In [90] the authors 
consider the problem of super-resolution restoration of the video, con
sidering the model uncertainties caused by the inaccurate estimates of 
motion between frames. They use a Kalman filter based approach to 
solve the problem. For MPEG compressed data, quantization noise adds 
upto the uncertainties. Gunturk et al propose a Bayesian approach for 
the super-resolution of MPEG-compressed video sequence considering 
both the quantization noise and the additive noise [91]. 
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We observe that additional temporal data is used to improve the 
spatial resolution. Is it then possible to use additional spatial data 
(read high resolution image) to improve the temporal resolution? Or, 
in other words, can the concepts of resolution in space and time be 
fused together? This issue is discussed next. Shechtman et al. [92] con
struct a video sequence of high space-time resolution by combining 
information from multiple low resolution video sequences of the same 
dynamic scene. They used video cameras with complementary proper
ties like low-frame rate but high spatial resolution and high frame-rate 
but low spatial resolution. They show that by increasing the temporal 
resolution using the information from multiple video sequences spatial 
artifacts such as motion blur can be handled without the need to sepa
rate static and dynamic scene components or to estimate their motion. 
To constrain the solution and provide numerical stability they use a 
space-time regularization term to impose the smoothness on the solu
tion. A directional (or steerable) space-time regularization term applies 
smoothness only in directions where the derivatives are low, and does 
not smooth the space-time edges, thus preserving spatial edges as well 
as minimizing the motion blur due to the finite exposure time. 

2.2 Motion-Free Super-Resolution 

In the previous section we have discussed many different methods that 
use motion as the cue to generate the high frequency details. All these 
methods require a dense point correspondence among frames. Any 
error in establishing the correspondence affects the quality of super-
resolution. Although the bulk of the work on super-resolution does 
use motion cue, of late, there has been work on using other possible 
cues. Motion-free super-resolution techniques try to obtain the spatial 
enhancement by using the cues which do not involve a motion among 
low resolution observations, thus avoiding the correspondence problem. 
One may expect an improved result since there would be no correspon
dence. However, we must find out what other cues can possibly be used 
as a substitute for the motion cue to bring in the high frequency de
tails. We need to study how useful are these cues and what additional 
difficulties do they introduce during the super-resolution process. An
other issue that comes out is how should we compare the performances 
of these methods with those of the motion-based methods. We simply 
cannot compare the methods as the data generation process is very 
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different in both the cases. Further, the volume of work in this area is 
still quite small. Use of cues other than motion is the subject matter of 
this monograph. Before we discuss some of the specific methods in sub
sequent chapters, we begin reviewing some of the existing techniques 
in motion-free super-resolution. 

Use of different amounts of blur is probably the first attempt in 
the direction towards motion-free super-resolution. In order to under
stand the problem let us take an example in ID data. Let / ( n ) be 
the unknown high resolution data, g{m) be the observed data, hi{n) 
and h2{n) be the known finite impulse response (FIR) blurring kernels. 
Here the indices m and n — 2m stand for the low and high resolution 
grids, respectively. We assume the decimation module to give us the 
average of the two adjacent pixels as the low resolution value. In order 
to explain the usefulness of the blur cue, let us further assume that the 
blur kernels are given by 

hi{n) •= an6{n) + ai2S{n — 1) 

/i2(n) = a2iS{n) + a22(5(n - 1), 

where 6{n) is the delta function. Let us further assume that there is no 
observation noise. Then, neglecting boundary conditions, 

gi{m) = 0.5[aii/(2m + 1) + (an + ai2)/(2m) + a i2/ (2m - 1)] 

g2{m) = 0.5[a2i/(2m + 1) -h (a2i -f a22)/(2m) + a22/(2m - 1)] 

Since the filter parameters are known the above two equations can eas
ily be solved to obtain the high resolution data, provided the two blur 
kernels are linearly independent. Here we have 2m number of obser
vations gi and g2 and 2m number of unknowns in the high resolution 
signal / . 

Hence we observe that it is, indeed, possible to use the differential 
blur as a cue for super-resolution. Definitely, there will be issues of sen
sor noise, availability of sufficient number of observations, smoothness 
of the reconstructed image, etc. This calls for the use of regularizing 
priors to solve the restoration problem. 

A MAP-MRF based super-resolution technique has been proposed 
by Rajan et al in [93]. Here the authors consider an availability of dec
imated, blurred and noisy versions of a high resolution image which are 
used to generate a super-resolved image. A known blur acts as a cue in 
generating the high resolution image. They model the high resolution 
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image as an MRF to serve as a prior for regularization. In chapter 3 
we shall relax the assumption of the known blur and extend it to deal 
with an arbitrary space-varying defocus blur for super-resolution pur
poses. Recently, Rajagopalan and Kiran [94] have proposed a frequency 
domain approach for estimating the high resolution image using the de-
focus cue. They derive the Cramer-Rao lower bound (CRLB) for the 
covariance of the error in the estimate of the super-resolved image and 
show that the estimate becomes better as the relative blur increases. 

A scheme for image high resolution from several blurred observa
tions by imposing a periodic grating with various absorptions in the 
object field is proposed in [95]. This method is based on the solution 
of a Predholm's integral equation of the first kind. The method can be 
employed in different fields such as microscopy and for signal and image 
transmission under conditions of heavy blur. The super-resolution here 
is based on an interference of spatial frequencies of the object and the 
grating. 

There has also been an effort in using a functional decomposition 
approach for super-resolution. One such example is the use of gener
alized interpolation [96]. Here a space containing the original function 
is decomposed into appropriate subspaces. These subspaces are cho
sen so that the rescaling operation preserves properties of the original 
function. On combining these rescaled sub-functions, they get back the 
original space containing the scaled or zoomed function. Here the pho
tometric information is used as the cue. The authors in [18] proposed 
a multi-objective super-resolution technique for super-resolving both 
the intensity field and the structure using blur and shading as cues. It 
is shown in the paper that the use of the blur and the shading cues 
can be combined under a common mathematical framework. All these 
methods discussed thus far assume the availability of multiple observa
tions of the same scene under different camera or lighting conditions. 
However, at times one may have to do with a single observation. What 
if you are given a low resolution image of a suspected criminal? Can 
this picture be super-resolved? 

Researchers have also attempted to solve the super-resolution prob
lem by using learning based techniques. These methods try to recognize 
the local features in a low resolution image and then retrieve the most 
likely high frequency information from the given training samples. In 
this book, these methods are also classified under motion-free super-
resolution as the new information required for predicting the high res-
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olution image is obtained from the training images rather than from 
the subpixel shifts among low resolution observations. Authors in [97] 
describe image interpolation algorithms which use a database of train
ing images to create plausible high frequency details in zoomed im
ages. They propose a learning framework called VISTA - Vision by Im
age/Scene TrAining. By blurring and down-sampling sharply defined 
images they construct a training set of sharp and blurred images. These 
are then incorporated into a Markov network to learn their relation
ship. A Bayesian belief propagation allows to find the maximum of the 
posterior probability. 

A quite natural extension to the above is to use the best of the both 
world - information from multiple observations as discussed earlier and 
the priors learnt from a given high resolution training data set. Capel 
and Zisserman have proposed a super-resolution technique from mul
tiple views using learnt image models [98]. Their method uses learnt 
image models either to directly constrain the ML estimate or as a prior 
for a MAP estimate. To learn the model, they use principal component 
analysis (PCA) applied to a face image database. Researchers have also 
attempted to combine the motion cue with the learning based method 
for super-resolution restoration. Pickup et al [99] combine the motion 
information due to subpixel displacements as well as motion-free infor
mation in the form of learning of priors to propose a domain specific 
super-resolution using the sampled texture prior. They use training 
images to estimate the density function. Given a small patch around 
any particular pixel, they learn the intensity distribution for the cen
tral pixel by examining the values at the centers of similar patches 
available in the training data. The intensity of the original pixel to be 
estimated is assumed to be Gaussian distributed with mean equal to 
the learnt pixel value and obtain the super-resolution by minimizing a 
cost function. 

There has also been some effort on applying an output feedback 
while super-resolving the images. If the purpose of super-resolution is to 
recognize a face, a character or a fingerprint, then the partially super-
resolved image is first matched to a database to extract the correct 
match and then this information can be used to enhance the prior 
for further improving the image quality. In [100] Baker and Kanade 
develop a super-resolution algorithm by modifying the prior term in 
the cost to include the results of a set of recognition decisions, and call 
it as recognition-based super-resolution or hallucination. Their prior 
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enforces the condition that the gradient of the super-resolved image 
should be equal to the gradient of the best matching high resolution 
training image. The learning of the prior is done by using a pyramidal 
decomposition. 

An image analogy method applied to super-resolution is discussed 
by Hertzmann et al in [101]. They use the low resolution and the 
high resolution versions of a portion of an image as the training pairs 
which are used to specify a "super-resolution" filter that is applied to 
a blurred version of the entire image to obtain an approximation to 
the high resolution original image. Here the emphasis is in learning the 
local statistics at a finer details. Candocia and Principe [102] address 
the ill-posedness of the super-resolution problem by assuming that the 
correlated neighbors remain similar across scales, and this apriori infor
mation is learnt locally from the available image samples across scales. 
When a new image is presented, a kernel that best reconstructs each 
local region is selected automatically and the super-resolved image is 
reconstructed by a simple convolution operation. 

So far all these learning based methods are restricted to dealing 
with enhancing a still frame only. A learning based method for super-
resolution enhancement of a video has been proposed by Bishop et al 
[103]. Their approach builds on the principle of example based super-
resolution for still images proposed by Freeman et al. [97]. They use a 
learnt data set of image patches capturing the relationship between the 
middle and the high spatial frequency bands of natural images and use 
an appropriate prior over such patches. A key concept there is the use 
of the previously enhanced frame to provide part of the training set for 
super-resolution enhancement of the current frame. 

Having discussed the current research status in super-resolution 
imaging, we concentrate on a few specific ways of achieving motion-free 
super-resolution. These methods are discussed in detail in the subse
quent chapters. 



Use of Defocus Cue 

This chapter introduces a technique to simultaneously estimate the 
depth map and the focused image of a scene, both at a super-resolution, 
from its defocused low resolution observations. The super-resolution 
technique has hitherto been restricted mostly to the intensity domain. 
We extend the scope of super-resolution imaging to acquire depth es
timates at high spatial resolution simultaneously. Given a sequence of 
low resolution, blurred and noisy observations of a static scene, the 
problem is to generate a dense depth map at a resolution higher than 
one that can be generated from the observations as well as to estimate 
the true high resolution focused image. This is definitely an ill-posed 
problem and hence we need a proper regularization. Both the depth 
and the image are modeled as separate Markov random fields (MRF) 
to provide the necessary prior and a mciximum a posteriori estimation 
method is used to recover the high resolution fields. Similar to the mo
tion cue, defocus cue is the most natural cue in a real aperture imaging 
system, i.e., a lens with a finite aperture. We demonstrate the use of 
defocus cue in super-resolving an image. Since there is no relative mo
tion between the scene and the camera, as is the case with most of the 
super-resolution and structure recovery techniques, we do away with 
the correspondence problem. We explain the method and demonstrate 
its applicability through experimental results. 

3.1 Introduction 

It was Pentland who first suggested that measuring the amount of 
blurring at a given point in the image could lead to computing the depth 
at the corresponding point in the scene, provided the parameters of the 
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lens system like aperture, focal length and lens-to-image plane distance 
are known [104]. Given two images of a scene recorded with different 
camera settings, we obtain two constraints on the spread parameters 
of the point spread function corresponding to the two images. One of 
the constraints is obtained from the geometry of image formation while 
the other is obtained from the intensity values in the defocused images. 
These two constraints are simultaneously solved to determine distances 
of objects in the scene [105]. 

In this chapter, we expand the scope of super-resolution to include 
high resolution depth recovery in a scene, in addition to restoring inten
sity values. As mentioned in chapter 1, one of the degradations in a low 
resolution image is the sensor related blur which appears as a conse
quence of the low resolution point spread function of the camera. Blur
ring can also arise due to relative motion between the camera and the 
scene. Note that all subsequent discussions in this chapter assume that 
the lens has a finite aperture and we cannot assume a pin-hole model of 
the camera. In the case of real aperture imaging, we know that the blur 
at a point is a function of the depth in the scene at that point. Thus, 
we notice that blur is a natural cue in a low resolution image formed 
by a real-aperture camera. We exploit this blur to recover the depth 
map through the depth from defocus formulation. We demonstrate how 
the depth map can be estimated at a resolution higher than one that 
can be normally extracted from such observations. We may call such 
a dense spatial depth map as the super-resolved depth. In addition to 
this, we show how to simultaneously estimate the true, high resolution 
focused image of the scene. This process may be called super-resolved, 
space varying restoration. Thus this is also a problem of blind restora
tion. The two stage process of identifying the blur and deconvolving 
the observed image with the corresponding PSF performs unsatisfac
torily in the presence of noise [106]. In this chapter, we demonstrate 
that these two tasks, namely, the super-resolved depth recovery and 
the super-resolved, space varying image restoration, can be combined 
through the interplay of two separate Markov random fields (MRFs) -
one representing the depth map and the other representing the intensity 
field. 
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3.2 Depth from Defocus 

In the era of automatic cameras, we often forget that a typical camera 
has parameters hke focus, aperture and shutter. Unfortunately, we must 
use a manual camera in this chapter. Since we assume that there is no 
relative motion between the scene and the camera, the shutter speed 
does not play any role. But we do vary the other two parameters in the 
work explained in this chapter. Most of the works on computer vision 
assume that the camera model is a pin-hole one and hence everything 
in the scene is always sharply in focus. This is no longer true in a real 
aperture imaging system. 

Since the degree of defocus is a function of lens setting and the 
depth of the scene, it is possible to recover the depth at a point if the 
amount of blur can be estimated, provided the lens setting is known. 
An out-of-focus point light source images into a blurred circle [107], 
whose radius is described by a blur parameter a defined as 

a = eC,v{^-l-h (3.1) 

where Fi is the focal length, u is the distance of the object point from 
the lens, v is the distance between the lens and the image detector, 
C, is the radius of the lens aperture and ^ is a camera constant that 
depends on its optics and CCD array resolution. The above relationship 
is valid primarily in geometric optics and when the lens suffers from 
no aberrations. In the literature, we encounter two kinds of blur, viz. 
the Gaussian blur and the pillbox (circular) blur. We have used the 
Gaussian blur here for computational ease, although the circular blur 
will work equally as well. As a matter of fact any single parameter class 
of PSF can be handled under the current formulation. 

Figure 3.1 illustrates the formation of the image of an object point 
as a circular patch due to the dislocation of the image plane from the 
focusing plane. Since the depth at various points in the scene may be 
varying continuously, a would also vary all over the image accordingly. 
The shift-varying PSF of the optical system is modeled as a circularly 
symmetric 2D Gaussian function 

1 î  + f 
hii.j'.m.n) = ^ , , rr^^xpf—--7—7 -rrA, (3.2) 

^'*^' ' ^ 27r[a(m,n)]2 ^^ 2[cr(m,n)]2^ ^ ^ 

It is quite well known that the blurring due to the lens may be 
modeled by a linear operator [108]. Hence, the superposition theorem 
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Circular patch due 
to out-of-focus blui 

Focusing plane Image plane 

Fig . 3 . 1 . Illustration of out-of-focus image formation. 

holds with respect to the Hght distribution on the image plane. Since 
the PSF is a function of the depth, the defocusing process is linear, but 
shift-variant Shift-invariance may, however, be assumed for subimages 
over which the depth is nearly constant. 

Several approaches have been proposed in the literature for recov
ering the depth from defocused images. We describe here the popular 
approach due to Subbarao [109]. In this scheme, two defocused images 
of the scene are obtained by choosing different sets of lens parameters. 
For two different lens settings, we get 

(^k = Q Ck Vk { 
Flk Vk 

1 
), fc-1,2. (3.3) 

Eliminating the unknown object distance u from the above equations, 
we obtain the relation 

ai = aG2 + ^, (3.4) 

where a = ^ and ^ = ^(I'^i f:^ - ^ - : ^ + ^ V 
The above equation which gives a relation between cri and (72 in 

terms of the known camera parameters, plays a central role in depth 
recovery. 

Given two defocused images, a local region gk{x^y) about the loca
tion (rr, y) in the k^^ observed image can be expressed as 

9k{x,y) ^hk{x,y) ^ f{x,y) (3.5) 
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Where the operator * represents convolution, f{x^y) is the corre
sponding local region in the focused (pin-hole equivalent) image of the 
scene while hk{x^ y) is the PSF corresponding to the depth of the scene 
at that point in the k^^ defocused image. In Eq. (3.5) it is assumed that 
the depth is constant over the local region. If the depth is not constant 
within the subimage, then the method would give the average depth. 
Let F{wx')Wy)^ Gk{wx^Wy)^ and Hi^{wx^Wy) be the Fourier transforms 
of/(a;,t/), gki^iV) and hk{x^y)^ respectively. Hence, from Eq. (3.5) we 
have 

Gk{Wx,Wy) = Hk{Wx,Wy)F{Wx,Wy). 

Dividing Gi{wx,Wy) by G2{wx^Wy)^ the unknown F{wx^Wy) can 
be eliminated. Since the PSF can be approximated by the Gaussian 
function, we obtain 

Gl{Wx,Wy) 
^r-^ — = exp 
G2{Wx,Wy) 

-•^{'^x'^ + '^y^){<^l'^ - <^2^) 

Taking the logarithm on both sides and rearranging terms, we get 

Wx^-{-Wy^ G2{Wx,Wy) 

For some {wx^Wy)^ the righthand side of this equation can be com
puted from the given image pair. Therefore, ai^ — (72̂  can be esti
mated from the given observations. Measuring the Fourier transform 
at a single point {wx^Wy) is, in principle, sufficient to obtain the value 
of (7i^ — (72 ,̂ but a more robust estimate can be obtained by taking the 
average over some domain in the frequency space. Let the estimated 
average be C, which is given by 

G = U f - i ^ log ^ i ^ ^ (3.6) 
Aj JAWx^-VWy^ ''G2{Wx,Wy) ^ 

Where A is the region in the {wx^Wy) space not containing the 
singularities, if any, and A is the area of-A. Therefore, from the observed 
images, we get the following constraint 

ai2 - a2^ = c. (3.7) 

While Eq. (3.4) gives a relation between <7i and (72 in terms of the 
camera parameters, the above equation gives an estimate of the relative 
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blur between the defocused images. Eqs. (3.4) and Eq. (3.7) together 
constitute two equations in two unknowns. From these equations, we 
get 

{a^ - l)a2^ + 2a/3(72 + ^^ - C. (3.8) 

In Eq. (3.8), we have a quadratic equation in (72 that can be easily 
solved. Given the lens parameters, one can then estimate the depth u 
from the value of a2 using Eq. (3.1). The procedure is now repeated 
at every pixel location to obtain the complete depth map. Thus, the 
depth of the scene is determined from only two observations obtained 
with different camera parameter settings. 

For the general situation, where the depth at various points in the 
scene may be varying continuously, a would also vary all over the image. 
The transformation from the focused image to the defocused image is 
still linear but no longer shift-invariant. Hence, the intensity at the 
location (a;, y) in the k^^ defocused image is given by 

9k{x,y) "=11 f{t,r)hk{t,r;x,y)dtdT, (3.9) 

where f{x^y) is the focused image of the scene, and hk{t^T\x^y) is the 
space varying PSF corresponding to the k^^ defocused image. Thus, in 
its generality, the recovery of depth from defocused images is a space-
variant blur identification problem. 

Early investigations of the DFD problem were carried out by Pent-
land [107], where he compared two images locally, one of which was 
formed with a pin-hole aperture and then recovered the blur parame
ter through deconvolution in the frequency domain. In [109], Subbarao 
removed the constraint of one image being formed with a pin-hole aper
ture by allowing several camera parameters like aperture, focal length 
and lens-to-image plane distance to vary simultaneously. Prasad et al 
[110] formulate the DFD problem as a 3D image restoration problem. 
The defocused image is modeled as the combinatorial output of the 
depths and intensities of the volume elements (voxels) of an opaque 
3D object. Klarquist et al propose a maximum likelihood (ML) based 
algorithm that computes the amount of blur as well as the deconvolved 
images corresponding to each sub-region [111]. In [112], Gokstorp esti
mates blur by obtaining local estimates of the instantaneous frequency, 
amplitude and phase using a set of Gabor filters in a multi-resolution 
framework. In [113], Watanabe and Nayar describe a class of broad
band rational operators which are capable of providing invariance to 
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the scene texture. Schechner and Kiryati address the similarities in 
DFD and stereo techniques on the basis of the geometric triangulation 
principle in [114]. An active ranging device that uses an optimized il
lumination pattern to obtain an accurate and high resolution depth 
map is described by Nayar et al in [115]. In [116], Rajagopalan et 
al use the complex spectrogram and the pseudo-Wigner distribution 
for recovering the depth within the framework of the space-frequency 
representation of the image. In [117], they extend this approach to im
pose smoothness constraints on the blur parameter to be estimated 
and use a variational approach to recover the depth. In [118], a MAP-
MRF framework is used for recovering the depth as well as the focused 
image of a scene from two defocused images. However, the recovered 
depth map and the scene image are at the same resolution as the ob
servations. Other techniques for depth recovery and issues related to 
optimal camera settings are described in [105]. The DFD problem can 
also be viewed as a special case of the space-variant blur identification 
problem since eventually it is the blur at a point that acts as the cue 
for determining the depth in the scene at that point. 

In this chapter, our aim is not only to recover the depth from defo
cused images, but also to do so at a higher spatial resolution, besides 
generating the super-resolved image of the scene. Thus, given a se
quence of low resolution blurred observations of size Mi x M2, we wish 
to generate a dense depth map of size, say rMi x rM2, where r is the 
upsampling factor. Clearly, by doing this, we get a more accurate de
scription of the depth in the scene, which eventually leads to a better 
performance of the computer vision task at hand. 

Since we are discussing about the super-resolution of both the in
tensity image and the depth map, let us look at some of the prior work 
on high resolution depth estimation. Shekarforoush et al use MRFs to 
model the images and obtain a 3D high resolution visual information 
(albedo and depth) from a sequence of displaced low resolution images 
[119]. The effect of sampling a scene at a higher rate is acquired by hav
ing interframe subpixel displacements. But they do not consider blurred 
observations. Cheeseman et al. describe another Bayesian approach for 
constructing a super-resolution surface by combining information from 
a set of images of the given surface [120]. Their model includes registra
tion parameters, the PSF and camera parameters that are estimated 
first and subsequently the surface reconstruction is carried out. In both 
these cases, the issue of registration has to be addressed since they in-
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volve camera displacement. As discussed earlier, errors in registration 
are reflected on the quality of the super-resolved image generated as 
well as on the depth estimate. Hence if we can avoid any relative mo
tion between the camera and the scene, we would be able to do away 
with the correspondence problem. This is precisely what is achieved by 
resorting to using the defocus cue as it is commonly done in the depth 
from defocus approach. However, the restoration problem becomes a 
space varying one and the accuracy would depend on how well we can 
estimate the blur parameter. 

3.3 Low Resolution Imaging Model 

We now discuss the formation of a low resolution image from a high 
resolution description of the scene. Note that the problem we solve here 
is actually the inverse. A preliminary level of discussion was carried out 
in chapter 1. Now we make it specific to the problem. Once again we 
remind that through the choice of the term super-resolved depth or the 
intensity, we mean the enhancement in the spatial resolution and not 
that of the quantization levels of the depth or the intensity map. 

A high resolution image of the scene is formed by the camera optics 
and this image is defocused due to varying depth components in the 
scene. The defocused scene is now sensed optically by the low resolution 
CCD elements. A sensor noise is now added to these measurements and 
one obtains the observed image. 

Let us refer to Figure 3.2 for an illustration of the above model. 
Let z{kj) and cr(fc,/) be the true high resolution intensity and blur 
(parameterized) maps, respectively. Due to depth related defocus, one 
obtains the blurred but high spatial resolution intensity map z (fc,/). 
The low resolution image sensor plane is divided into Mi x M2 square 
sensor elements and { '̂(i, j ) } , i = 0 , . . . , Mi — 1 and j — 0 , . . . , M2 ~ 1 
are the low resolution intensity values. For a decimation ratio of r, the 
high resolution grid will be of size rMi x rM2. The forward process of 
obtaining {g{i:j)} from {z (kj)} is written as [50] 

r ( z + l ) - l r ( j + l ) - l 

9iid)-^2 E E ^'(^'0 (3.10) 
k=ri l=rj 

i.e., the low resolution intensity is the average of the high resolution 
intensities over a neighborhood of r^ pixels. This decimation model 
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simulates the integration of light intensity that falls on the high resolu
tion detector. It should be mentioned here that the above relationship 
assumes that the entire area of the pixel is used for light sensing and 
nothing is used for electrical wiring or insulation. Thus, we assume the 
fill-factor for the CCD array to be unity. 

The process of blurring the high resolution image z{kj) due to 
defocus is modeled by 

^' (̂ ' 0 = 53 1] ^{h J)Hk, /; i, j) (3.11) 

where z {-) is the defocused version of the high resolution image and 
/z(-; •) is the space variant blurring function given in the previous sec
tion. 

The space varying blurring function is dependent only on a single 
blur parameter a. However, in the present context, this blur describes a 
high resolution representation of the depth field compared to the spatial 
resolution at which the scene is observed. The addition of white Gaus
sian noise at the CCD sensor completes the low resolution observation 
model and is illustrated in Figure 3.2. 

noise 

z(k,l) • 

a(k,l) • 

Defocus Blurring 

z'(k,l) 

• ^ r 

g(i0) 

.r 
V J y(i.j) 

Fig. 3.2. Low resolution defocused image formation from high resolution image. 
Here the symbol | r denotes the decimation by a factor of r. 

We now define the super-resolution problem in a restoration frame
work. There are K observed images ym{hj)'> ^ = 1? 2, • • •, î T, each of 
size Ml X M2. These images are defocused, decimated and noisy versions 
of a single high resolution image z{k^ I) of size rMi x rM2 = Ni x iV2. 
If y ^ is the M1M2 x 1 lexicographically ordered vector containing pix
els from the low resolution image ym{hj)i then a vector z of size 
r^MiM2 X 1 containing pixels of the high resolution defocused image 
can be formed by placing each of the rxr pixel neighborhoods sequen
tially so as to maintain the relationship between a low resolution pixel 
and its corresponding high resolution pixel. This relationship can also 
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be represented through a decimation matrix D of size Mi M2 x r'^M\ M2 
consisting of values of ^ at r^ locations in each row (using a proper re
ordering of z ). For a decimation factor of r, iVi = rM\ and N2 = rM^ 
decimation matrix D has the form [50] 

1 1 . . . 1 0 
11.. .1 

0 11.. .1 

(3.12) 

As an example, consider an observation of size 2 x 2 . For a decimation 
factor of r = 2 the size of z becomes 4 x 4 . Now with lexicographically 
ordered z of size, say 16 x 1, the D matrix is of size 4 x 16 and can be 
written as (after reordering of z ) 

D^ 1 
1111000000000000 
0000111100000000 
0000000011110000 
0000000000001111 

(3.13) 

The D matrix can also be expressed without reordering of z as 

(3.14) - J 

1100110000000000 
0011001100000000 
0000000011001100 
0000000000110011 

This decimation model simulates the integration of light intensity that 
falls on the high resolution detector. We use the same decimation model 
throughout in the book. 

Let H be the blur matrix corresponding to the space variant blurring 
function h{kj\i^j) in Eq. (3.11). We reiterate that this function is 
governed by the high resolution blur a{kj). Thus, for the w}^ low 
resolution observation, the blur matrix Hm is a function of (JmikJ)', 
where the earlier notation is modified to include a subscript for the 
observation number. The blur field is now lexicographically ordered to 
obtain a vector s^- The blur matrix H^n = H{Sm) corresponding to 
the rn}^ observation can now be formed but due to the space varying 
nature of the blur, it does not possess a block Toeplitz structure. The 
image formation model is now compactly written as 

Ym = DH{Sm)z + n^, m = l,...,K (3.15) 



3.4 MRF Model of Scene 43 

where jy'(s^)'s are the high resolution space varying blurring matrix 
(PSF) of size r^MiM2 x r^MiM2 and D is the decimation matrix. Here 
n ^ is the M1M2 x 1 noise vector which is zero mean i.i.d, and hence 
the multivariate noise probability density function is given by 

Pi^m) - MlM êxP \-Wr2^^^rn \ , (3.16) 

where a^^ denotes the variance of the noise process and K is the number 
of low resolution observations. Thus the model consists of a collection 
of low resolution images, each of which differs from the others in the 
blur matrix, which is akin to changing the focus of a stationary camera 
looking at a stationary scene. 

3.4 MRF Model of Scene 

Since the restoration problem is an ill-posed problem, we plan to model 
the scene in such a way that the model parameters can be used as priors 
for the purpose of obtaining a regularized solution. In the area of image 
processing and computer vision, stochastic modeling plays an impor
tant role. The Markov random field (MRF) provides a convenient and 
consistent way of modeling context dependent entities such as image 
pixels, depth of the object and other spatially correlated features. This 
is achieved through characterizing mutual influence among such enti
ties over a spatial neighborhood using the MRF modeling. Until the 
equivalence between the MRF and the Gibbs random field (GRF) was 
discovered, the power of MRF as a spatial interaction model was not 
fully exploited. The Gibbs distribution was introduced in 1925 by Ising 
[121], where he used the same to model the molecular interaction in 
ferromagnetic materials. The difficulties involved in the use of MRF, 
described by the conditional distribution are now eliminated because 
the joint distribution is readily available with the GRF characteriza
tion. A GRF describes the global properties of an image, while an MRF 
is described in terms of local properties. The practical use of MRF 
models is largely ascribed to the equivalence between MRFs and Gibbs 
distributions (GRF) established by Hammersley and Clifford [122]. 

We now briefly introduce the concept of MRF for completeness 
purposes. Consider a lattice L described by a square array of pixels 
{0 < (i, j ) < iV — 1}. A random fleld has a joint probability distribu
tion for an iV^ dimensional vector z, which contains the random variable 
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zt as the 'label' at site t. The label could be gray values, pattern classes, 
etc. A collection of subsets of a lattice L defined as 

M={Afij: ihj) eL.AfijCL} 

is a neighborhood system on L, if and only if the neighboring relation
ship has the following properties. 

• A site is not a neighbor to itself: (i, j ) ^ A/ij 
• The neighboring relationship is mutual: if (fc,/) G Afij then (i, j ) G 

A/A;,/ for any (i , j) G i . 

A hierarchically ordered sequence of neighborhood systems that are 
commonly used in the context of image modeling consists of j V \ A/^, • • • 
neighborhood systems. In general M'^ is called the m*^ order neigh
borhood. In the first order neighborhood system, every site has four 
neighbors as shown in Figure 3.3(a) where (z, j ) denotes the site con
sidered and O's its neighbors. In the second order neighborhood system 
there are eight neighbors for every site as shown in Figure 3.3(b). The 
pair (I/, A/) constitutes a graph where L contains the nodes and Af de
termines the link between the nodes. A clique c for (I/, AT) is defined 
as a subset of sites in L in which all pairs of sites are mutual neigh
bors. Cliques can occur as singletons, doublets, triplets and so on. The 
cliques corresponding to the first order neighborhood and the second 
order neighborhood system are shown in Figure 3.3(c). 

Let Z be a random field over an arbitrary N x N lattice of sites 
L — {{hj)\^ ^ hj < ^ — ! } • From the Hammersley-Clifford theorem 
[123] which proves the equivalence of an MRF and a GRF, we have 

P ( Z = z) = ^ e - ^ ( ^ ) , 
Z^ Z 

where z is a realization of Z, Zz is the partition function given by 
X)^ e~^(^) and ?7(z) is the energy function given by 

c/(z) = Y. ^c{-^)-
cec^ 

Vc (z) denotes the potential function of clique c and C^ is the set of all 
chques. 

Let us now model the scene intensity by an MRF. The lexicographi
cally ordered high resolution image z satisfying the Gibbs density func
tion is now written as 
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(i,j) 

0 

0 

0 

0 

(i,j) 

0 

0 

0 

0 

(a) (b) 

D R 4^ ^ 

(c) 

Fig. 3.3. (a) First and (b) second order neighborhood, and (c) cHques associated 
with (b). 

P{^) = ^ e x p (3.17) 

In order to employ a simple and fast minimization technique like 
gradient descent, it is desirable to have a convex energy function. To 
this end we can consider pair wise cliques on a first order neighborhood 
and impose a quadratic cost which is a function of finite difference 
approximations of the first order derivative at each pixel location, i.e., 

E K'(^) = I E Eii^'^^i - Zk,i-if + {zk^i - zu-,,in (3.18) 
cec^ k=l 1=1 

where A represents an appropriate weight for the prior and as the 
penalty for departure from the smoothness in z. 

The MRF prior serves as a contextual constraint to regularize the 
solution. These constraints push the reconstruction towards a smooth 
entity. Although this helps to stabilize the minimization process, it 
flattens the entity to be super-resolved causing distortions across dis
continuities. The solution to this is to use a prior which preserves the 
discontinuities. Unlike in the one dimensional signals, it is well known 



46 3 Use of Defocus Cue 

that in images, pixels with significant change in intensities carry im
portant information. In order to incorporate provisions for detecting 
such discontinuities, Geman and Geman [124] introduced the concept 
of line fields located on a dual lattice. The horizontal line field element 
l^ij connecting site (i, j ) to {i — 1, j ) aids in detecting a horizontal 
edge while the vertical line field element v^ij connecting site (i, j ) to 
(i, j — 1) helps in detecting a vertical edge. We have chosen /^^j and 
v^i^j to be binary variables over the line fields £^ and V^. The on-state 
of the line-process variable indicates that a discontinuity, in the form 
of a high gradient, is detected between neighboring points, e.^., 

= 0 else (3.19) 

Similarly 

V^ij = 1 if \Zij — Zi^j-l\ > 02 

= 0 else, (3.20) 

where 6i and 62 are appropriate threshold values for declaring a discon
tinuity. It may be mentioned here that we make use oi 61 = 62 = 0 in 
all our experiments, i.e., the thresholds for detecting the horizontal and 
vertical edges are kept the same. Each turn-on of a line process variable 
is penalized by a quantity 7^ so as to prevent spurious discontinuities. 
Else a trivial solution would declare a discontinuity at every location. 
Thus the energy function for the random process Z with discontinuity 
fields C^ and V^ is obtained by modifying Eq. (3.18) 

C / ( z , l , v ) - ^ y / ( z , l , v ) 

cec^ 

= Zl[^^{(^^'i~^^'i-i)^(l"'^^^'i) + ( ^ M + I - ^ M ) ^ ( 1 - ' ^ ^ J + I ) 

+ {Zi^j - Zi-lj) (1 - l^i^j) + {Zi^lJ - Zij) (1 - /^i+l,j)} 

= Yl^f^^^^s + T ê̂ p]) (3.21) 
hj 

where ezs and e^p, respectively, are the smoothness term and the 
penalty term necessary to prevent occurrence of spurious discontinu
ities. Here /j.z represents the penalty for departure from the smoothness. 
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We use this particular energy function in our studies in order to pre
serve discontinuities in the restored image. Any other form of energy 
function can also be used without changing the solution modality dis
cussed here. 

3.5 Modeling the Scene Depth 

In the previous section, we showed that the image intensity can be 
modeled by an MRF. In [125] and [126], the depth of a scene is mod
eled as an MRF. This is justified because the change in depth of a 
scene is usually gradual and hence the depth can be said to exhibit 
a local dependency. Since the space varying blurring parameter a in 
Eq. (3.1) is a function of the scene depth, we expect it to exhibit sim
ilar local dependencies and model it by an MRF. Let 5 be a random 
field defined over the same high resolution lattice L that denotes the 
defocus blur a{kj) at that point. The advantage of defining the field 
over the blur parameter a instead of over the depth values is that it 
reduces the mathematical complication over defining the blur matrix 
H in Eq. (3.15). Once a is found out, the depth can be obtained using 
the known camera parameters. 

The lexicographically ordered high resolution blur (or depth) field 
s satisfy the Gibbs density function 

P(s) = ^ e x p { - ^ y / ( s ) } . 

Here Zs is the corresponding partition function. We may use the 
same clique set C^ as in the case of the intensity field z or select a dif
ferent set of cliques C^. We are now free to select any potential function 
function ^^^(s) as we deem fit for the problem. In this particular ex
ample we consider the same potential function as it was chosen for the 
intensity field. Thus the energy function for the random field S with 
corresponding discontinuity fields £* and V* is given by 

U{s,l,v)= ^ F / ( s , l , v ) 
cec 

= Yllt^^ii^id-^hj-ifi^ - A j ) + (sj,j+i-Sij)^(l - v'i,j+i) 
« j 

+ (SiJ - S i - l j f (1 - I'id) + iSi+l,j - Si,jf{l - l'i+l,j)} 
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+ 7s{l'id + I'i+ij + v'i^j + v'ij-^i}] 

= Ylil^sess + 7565^]. (3.22) 

Here the superscript (or the subscript) 5 denotes that the fields (or 
parameters) correspond to the space varying blur. 

It is worth noting that we are modeling the high resolution intensity 
and the depth (blur) fields as MRF and not the low resolution obser
vations. This is due to the fact that the property of the MRF does not 
percolate across the scale [127]. Hence the low resolution observations 
are not constrained to be MRFs. 

3.6 S u p e r - R e s o l u t i o n R e s t o r a t i o n 

We now explain how a MAP estimation of the dense intensity and blur 
fields can be obtained. The MRF models serve as the priors for the MAP 
estimation. We have modeled both the high resolution image z{k^ I) and 
the blur process a{kj) as separate Markov random fields which are 
used as a prior. Let S and Z denote the random fields corresponding to 
the high resolution space-variant blur parameter a{kj) and the high 
resolution focused image z{kj) over the rMi x rM2 lattice of sites L, 
respectively. We assume that S can take Bg possible levels and Z can 
take Bz possible levels. Although the fields S and Z are actually con
tinuous, the blur field is quantized to reduce the number of acceptable 
configurations in the combinatorial minimization while the intensity 
field is usually quantized to 256 gray levels. One may use a nonlinear 
quantization scheme for the levels of S for better results, but this is not 
pursued in this exercise. The a posteriori conditional joint probability 
of S and Z is given by P{S = s^Z = z|Yi = y i , . . . , Y/c = YK) where 
the l ^ ' s denote the random fields corresponding to the m^^ observed 
image. From Bayes' rule, 

P{S = s,Z = z\Yi=yr,...,YK^yK) 

_ PjYi = yu... ,YK = YKIS = s,Z = z)P{S = s,Z = z) 

P{Yr=yu...,YK = yK) 

The random fields S and Z are assumed to be statistically independent 
in this study as they refer to two independent processes, namely the 
depth and intensity processes. However, the assumption of statistical 
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independence of the two fields S and Z may not be always valid. In 
many cases the intensity and the depth maps are related, for example, 
in shape from shading or texture applications where the shading may 
depend on perspective effects or object geometry. In absence of any 
knowledge of the cross-covariance matrix between the two fields, we 
assume them to be independent. Since the denominator in the above 
equation is not a function of s or z, the maximum a posteriori (MAP) 
problem of simultaneous estimation of high resolution space-variant 
blur identification and super-resolved image can be posed as: 

(z,s) ==arg maxP[(yi =yi,...,YK = yK\S = S,Z = z) 
''^ xP{S=^s)P{Z = z)]. 

Note that the random fields S and Z are high resolution while the 
observations are low resolution. Since S and Z are both modeled as 
MRFs, the priors P{S — s) and P{Z = z) have a Gibbs distribution 
given by 

P (5 = s) = i - e x p { - ^ y / ( s ) } (3.23) 
^' cec-

and 

P(Z = z) = ^exp{-J2Ve'{^)} (3.24) 

where Zg and Zz are normalizing constants known as partition func
tions, Vc{') is the clique potential and C^ and C^ are the set of all 
cliques in S and Z, respectively. All these terms have been explained 
in the previous two sections. Thus the posterior energy function to be 
minimized is obtained by taking the log of posterior probability and by 
assuming the sensor noise to be independent and identically distributed 
(i.i.d) Gaussian 

f̂ (3^ )̂ ^ ^ II y ^ - DHMz f ^ ^ ^,^^^ ^ ^ ^,^^^^ 3̂ 25) 

m=i ^^^ cec' cec' 

where cTŷ^ is the noise variance. 
Smoothness is an assumption underlying a wide range of physical 

phenomena. However, it was mentioned earlier that careless imposition 
of the smoothness criterion can result in undesirable, over smoothed 
solutions. This could happen at points of discontinuities either in the 
image or in the depth map. Hence it is necessary to take care of dis
continuities. We introduce separate line fields for the two processes S 
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and Z. After incorporating the first order smoothness term as defined 
in Eq. (3.21) and Eq. (3.22), the posterior energy function to be mini
mized is now defined as 

f^(s,z) = X ] "^ n Y^ ^^\\i^s^ss^lsesv\-^\[iz^zs-^lz^zv\\' 

(3.26) 
Parameters [i and 7 correspond to the relative weights of the smooth
ness term and the penalty term necessary to prevent occurrence of 
spurious discontinuities. 

When the energy function is non-convex, there is a possibility of the 
steepest descent type of algorithms getting trapped in a local minima. 
Hence, simulated annealing is used to minimize the energy function 
and to obtain the MAP estimates of the high resolution space-variant 
blur and the super-resolved image simultaneously. Simulated anneal
ing applies a sampling algorithm such as the Metropolis algorithm or 
Gibbs sampler, successively at decreasing values of a temperature vari
able T. In this work, we have chosen a linear cooling schedule, i.e., 
T(jt) = 5 ^(A;-i) where 5 is typically between 0.9 and 0.99. The pa
rameters for the MRF models are chosen by trial and error and the 
optimization is done through sampling the configuration spaces Z and 
S alternately. The details of the optimization process can be succinctly 
given by the following steps. 

begin 
1. Initialization: 
Obtain low resolution depth map using complex spectrogram 
[116]. 
Set s{initial) = bilinearly interpolated depth map. 
Set z{initial) = bilinearly interpolated least blurred observation. 
Choose To,fis,fiz,7s,lz, S, 0s,6z, M\ M^a^, and a^. 
Set s{old) = ^{initial) 
Set z{old) = z{iniUal) 
Set k = 0. 
2. Repeat (annealing loop) 

for / = 1 to M , do (Metropolis loop) 
begin 

for i = 0 to iV - 1, j = 0 to iV - 1, do 
begin 
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Get Sij{new) from Gaussian sampler with 
mean Sij{old) and variance as*^. 
iiU{z{old),s{new)) < U{z{old),s{old)) then 

s{old) = s{new)^ 
else 
if exp (^(^^^^)><^^)-^^(^^^^)>^net.))-| ^ ^^^jjQ^ ĵ 

then 
s{old) = s(nei<;). 

end if 
Get Zi^j{new) from Gaussian sampler with 
mean Zij{old) and variance cr^ .̂ 
if i[/(z(net(;),s(o/(i)) < U{z{old)^s{old)) then 

z{old) = z{new)^ 
else 
if exp ^^K^^^s(^^^))-^^K^^^)>«(^^^))^ > rand[0,1] 

then 
z{old) — z{new). 

end if 
end 

end 
k = k + l. 

until k > M'\ 
end 

It is interesting to note the effect of the value of K (the number of 
observations) in Eq. (3.26) in super-resolving the fields. For an upsam-
pling factor of r, one requires to estimate 2r^ parameters (intensity and 
depth values) per pixel. Hence one would ideally like to have K > 2r^. 
However, this would be tantamount to using only the first (data fitting) 
term of the equation and it does not exploit the power of model based 
restoration techniques. Due to the punctuated smoothness terms one 
can obtain a very good estimate of both the fields even when K < 2r^. 
Imposition of the penalty for the line detection saves the algorithm 
from the possibility of excessive smoothing. 
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3.7 N e i g h b o r h o o d of P o s t e r i o r D i s t r i b u t i o n 

If the posterior distribution has local dependencies that enable it to be 
modeled as an MRF, then it is possible to reduce the computational 
load of the estimation problem. This allows us to update the fields 
to be estimated locally, as it was suggested in the previous section. 
The following theorem asserts that such a neighborhood structure does 
exist. 

Theorem 3.1. (i) For each y ^ fixed, P[S = s,Z = z\Yi = y i , . . . , YK = 
YK] is a Gibbs distribution over {L^Af} with energy function 

m=i '^ cec^ cec' 

(ii) The posterior neighborhood corresponding to the site (fc, /) is given 
by 

Nk^l = N^, U Nil U^^i {(a, 6) ; r : (fc, /) ^ r G C(^,,)^, 

for some level of s{kj) or z{kj)}. Here J\f represents the neighbor
hood system with line fields included, while Q^ x̂, is the neighborhood 
corresponding to the subsampled lattice (a, h) ]^ r in the low resolution 
observation y ^ . 

Proof : (i) The first part of the theorem has been derived according 
to equation (3.25). 

{a) Due to the space varying nature of the blur, Cui^\^ would not be 
translationally invariant and would also be different, in general, from 
M^l and M^i^ the neighborhoods corresponding to the MRF models of 
the space variant blur parameter and the intensity process, respectively. 
The conditional probability of s{k^ I) and z{k^ I) given all the remaining 
pixels and the observations y^^j, is given by 

P[S{kJ) = s{kJ),Z{k,l)=z{kJ),0<{kJ)<N-l\Yi=yu--^.YK = yK] 

= P[S{k,l) = s{k,l),Z{kJ) = z{kJ)\S{a,b) = s{a,b),Z{a,b) - ; ^ (a ,6 ) , 

0<{a,b)<N-l,{a,b)^{kJ);Yi=yu...,YK = yK] x 

P[S{a, b) = s{a, b), Z{a, b) = z{a, 6), 

0 < (a, 6) < iV - 1, (a, 6) 7̂  (A;, /) | Yi - y i , . . . , F / , = y / , ] . 

But 
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P[S{k, I) = s{k, /), Z{k, I) = z{k, I) I S{a, b) = s{a, b), Z{a, b) - z{a, 6), 

0 < ( a , 6 ) < i V - l , {a,b)^{kJ);Yi=:yu...,YK = yK] 

^ exp(-;7(s,z)) 

X^all config. of s(fc,0,^(A:,o( '̂'P(~^( '̂ ^)) * 
In the above equation, the components s{kj) and z{kj) can take any 
of the Bs and Bz possible levels, respectively. We define the vectors 

i^m = ~7^—{ym-DH{Sm)z), m = l , . . . , K 
V2an 

Now the posterior energy function can be written as 

cGC« cGC^ m=lO<(a,6);r<7V/r 

Let r = {(a, 6) ^ r : 0 < (a,6) 4. r < N/r} and yl̂ ri = {(a, 6) i 
r : {kj)ir^ C/̂ Mir' ^̂ ^ ^̂ ^ levels of s(fc,/) and z{kj)}. Next, we 
decompose C/(s, z) as follows : 

C/(s,z)= ^ F / ( s )+ E K'(^) 

+ E E v;i((«,'')ir)+ E /̂(s) 
m=l {r-ylm} c6C :̂(fc,0^c 

+ E K ^ ( ^ ) + E EVim((«,^)4^) (3.28) 
ceC2:(A;,J)ec m=l {A^} 

Substituting the above in equation (3.27) and canceling terms common 
to the numerator and the denominator, we get 

P[S{k, I) = sik, /), Z{k, I) = z{k, I) |5(a, b) = s{a, 6), Z{a, b) = zia, 6), 

0<{a,b)<N-l, {a,b) f (fc,/);yi = y i , . . . , y / f = yif] 

e x p ( - X : - X 2 - X 3 ) 3̂ 23) 

E e x p ( - X i - X 2 - X 3 ) ' 
5(A;,i),z(/c,/) 

where 
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ceC^:{k,l)ec 

K 

m=l{r-Am} 

and 

ceC'':{h,l)ec 

Hence, the posterior neighborhood structure corresponding to site 
(fc,/) is given by 

M{k, I) = Mil u M^i u^=i {T-Am} 

= M^l U J^li U^^i {(a, 6) ; r : (fc, /) i r G Cc'̂ ,,) ,̂ 

for some level of s{k^l) or ;2;(fc,/)}. (3.30) 

The method of simultaneous depth recovery and image restoration 
described in [118] is a specific instance of the more general scheme 
presented here in that the estimated depth map and intensity values 
are at the same resolution as the defocused observations. This fact leads 
to the following corollary which is proved in [105]. 

Coro l la ry 1 (i) For each yi and y2 fixed, P[S = s, Z = z\Y\ — 
yi ,y2 = y2] «5 a Gibbs distribution over {L,Af} with energy function 

u{s,z) = E i i y - - y ^ i i ' + Y: V^S)+E K'i-) 

(a) The posterior neighborhood corresponding to the site (kj) is given 
by 

A4,/ = ^f^^l ^M',^1 U {(a,6) : (fc,/) € C^^,^ 

for some level of s{kj) or z{kj)} U {(a, 6): (A:,/) G Cf̂ x̂ 

for some level of s{kJ)or z{kj)}. 

Here J\f represents the neighborhood system with line fields included, 
while Cf^i)) ^̂  tf^^ neighborhood corresponding to the site (a, 6) in the 
low resolution observation yrn-
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3.8 Experimental Demonstration 

We have explained how the defocus cue can be used in super-resolving 
an image. We now illustrate the efficacy of the method for simultane
ous super-resolved blur identification and image reconstruction through 
several examples of simulation and real data. 

We note that since the blur is a function of depth, it suffices to 
recover the distribution of the blur parameter over the image. We show 
all our results for an upsampling factor of r = 2. In all simulation 
experiments, only five low resolution observations were considered i.e., 
K < 2r^. In addition to the space variant blur, each low resolution 
observation was also corrupted with an additive white Gaussian noise 
of variance 5.0. The low resolution blur was estimated from any two of 
the five observations using the complex spectrogram method described 
in [116] which offers a good initial estimate of the blur with a very 
little computation. A square window of size 16 x 16 was used for the 
purpose. A bilinear interpolation of the estimated low resolution blur 
yields the initial estimate of the high resolution blur. Similarly, the 
bilinear interpolation of the least blurred image was chosen as the initial 
estimate of the true focused image. The number of discrete levels for the 
space variant blur parameter {a) was taken as Bg = 128. We observe 
that in most cases, the amount of blur is restricted to cr = 5. We 
discretize the interval [0,5] in 128 levels. For the intensity process, 
Bz = 256 levels were used, which is the same as the CCD dynamic 
range. The parameters involved in the simulated annealing algorithm 
while minimizing Eq. (3.25) are as follows. 

• ^5 and 6z - thresholds for the line fields corresponding to the blur 
parameter and the intensity process, respectively. 

• To - initial temperature. 
• 6 " cooling schedule (rate of cooling). 
• Gz and Gs - standard deviations of the Gaussian sampler for the 

intensity and the blur process, respectively. 

In order to generate the data for the simulation experiments, we adopt 
the following strategy. First, we consider the image to have been taken 
with a pin-hole camera implying that we obtain a focused image of the 
scene. Next we assign an arbitrary depth map to the scene. Since the 
depth at a point in the scene is a function of the amount of blur at 
that point, the depth and the blur are deemed to be analogous. Using 
the space varying blur, we carry out a space varying convolution with 
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the scene map to obtain a defocused image. What we are doing, in 
essence, is that we are mapping a texture to a particular depth map. 
Appropriate noise sequences are added to obtain the observations. 

(a) 
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(c) 

1 1 * M 
• p r - •••• 

• ̂  1 
— ' — J ^ 

• ' ^ ^ 

(e) (f) 

Fig. 3.4. (a, b) Two of the defocused low resolution Taj images, (c) The true 
high resolution blur, (d) The estimated super-resolved blur, (e) The original high 
resolution Taj image, (f) The super-resolved Taj image. 

Figures 3.4(a) and 3.4(b) show two of the five low resolution ob
servations of the Taj image. In general we display only the two of 
the least blurred observations here. The blur parameter in these de
focused images are related through am-\-i{hJ) — 0-75 cjrn{hj)^ ^ — 
1, . . . ,4. We recall that such a linear relationship between the blurs 
exists when defocused images of a scene are obtained using differ-
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ent values of the camera parameters. The true high resolution blur 
(Ji{kJ) = aexp(-^^"^^^'^+/^"^^)'), 0 < kj < 128, is plotted in Fig
ure 3.4(c). In this experiment, the values are a = 1.0, and b = 35.0. As 
mentioned earlier, we have chosen a decimation factor of r == 2. The 
original Taj image is blurred using the space-varying Gaussian blur
ring kernels formed from the blurs given above and then down sam
pled. White Gaussian noise is now added to the observations. The es
timated values of the super-resolved blur parameters using the method 
described earlier are shown in Figure 3.4(d). We compare the perfor
mance in terms of root mean squared error (RMSE) for the blur field. 
The RMSE between the true entity f and the estimated one f is defined 
by the following equation. 

RMSE = 

Using the above equation, the RMSE in the estimate of the blur was 
found to be only 0.033. The values of the parameters used in the sim
ulated annealing (SA) algorithm are fis = 1000.0, 75 = 15.0, 9s = 0.15, 
as = 1.2, fiz = 0.005, jz == 5.0, 6^ = 25.0, a^ = 3.0, 6 = 0.975 and 
To = 3.0. It is to be noted here that no attempt has been made in 
this study to obtain the best parameter set for the optimization pur
pose. The algorithm has been able to determine the super-resolved 
blur (depth) field quite accurately. The true high resolution Taj image 
is shown in Figure 3.4(e), and the super-resolved image is shown in Fig
ure 3.4(f). We observe that the quality of the estimated super-resolved 
image is also good especially in the region of the main entrance and 
near the minarets. Note that the technique has worked well even in the 
case of a fairly non-textured image such as the Taj image. 

We next consider a blur profile in the form of a ramp function. 
The blur varies linearly from a value of 0.02 at the left edge of the 
image to 0.97 at the right edge. Two of the least blurred low reso
lution Graveyard images generated using our observation model are 
shown in Figures 3.5(a) and (b). Once again the blurs are related 
through am-\-i{iiJ) — 0-75 Cmihj)^ ^ "= ̂ ^--A^ and the true high 
resolution blur a{kj) is plotted in Figure 3.5(c). Since the amount 
of blur increases from left to right, the right part of the images are 
severely blurred. As before, the initial estimate of the super-resolved 
blur is the bilinear interpolation of the low resolution estimate of the 
blur determined using the complex spectrogram method. The bilin-
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Fig. 3.5. (a, b) Two of the simulated low resolution observations, (c) The true 
high resolution blur, (d) The estimated super-resolved blur, (e) The original high 
resolution Graveyard image, (f) The super-resolved Graveyard image. 

early interpolated, least blurred observation is the initial estimate of 
the super-resolved focused image. The super-resolved blur parameters 
and the super-resolved Graveyard image are shown in Figure 3.5(d) and 
Figure 3.5(f), respectively. The RMSE in the estimate for the super-
resolved blur is again only 0.019, yielding an average estimation error 
of about 2%. The parameters of the SA algorithm are kept the same 
as in the last experiment. The true high resolution Garveyard image is 
shown in Figure 3.5(e). We observe that the degradations in the obser
vations are eliminated in the super-resolved image. Note that steps in 
the right end are now clearly visible. 
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In both the above experiments the field representing the blur pro
cess can be assumed to be sufiiciently smooth so as to preclude the use 
of line fields for the blurring process alltogether. In order to see how 
the method performs in presence of discontinuities in the blur process, 
we next consider the case where the blurring is constant over a certain 
contiguous region of the image and then varies linearly over a second 
region and finally is constant again over the remaining part of the 
image. Two such blurred observations of the Sail image are shown in 
Figures 3.6(a) and (b). The true dense depth profile and the true high 
resolution image are shown in Figures 3.6(c) and (e), respectively. The 
estimated super-resolved blur parameters are shown in Figure 3.6(d) 
and the super-resolved image in Figure 3.6(f). The RMSE in the esti
mation of super-resolved blurs is only 0.020. The super-resolution image 
recovery technique has performed quite well. The numerals on the sail 
as well as the thin lines are clearly discernible. Even the left arm of the 
sailor is visible. 

For a higher degree of discontinuity we consider a step profile for the 
variation in blur/depth in the same Sail image. Two of the defocused 
sail images resulting from the space varying convolution of the step form 
of blur variation with the original scene map are shown in Figures 3.7(a) 
and (b). The true variation of blur is plotted in Figure 3.7(c). The 
estimated super-resolved blur and image are shown in Figures 3.7 (d) 
and (e), respectively. Since the blur variation is highly discontinuous, 
we observed that slightly reduced values of fig = 500 and 7s = 10 (i.e., 
less demand for smoothness and lowering the penalty for introducing a 
discontinuity in the depth field) yield better results. The RMSE in the 
blur estimates is 0.068 which is slightly on the higher side compared to 
the previous cases. Still the image reconstruction is very good. 

Next we present the results of our technique on low resolution ob
servations of a Text image. The purpose of the experimentation is 
to subjectively judge the improvement in readability after the super-
resolution restoration. Each observation of size 41 x 207 is blurred by 
a space varying blur which has a similar variation as in the previous 
example, viz., step variation. Two of the five low resolution images are 
shown in Figure 3.8(a) and (b). The true high resolution blur parame
ters and the high resolution intensity map are shown in Figures 3.8(c) 
and (e), respectively. Due to the step-like variation in the blur profile, 
we notice the text getting progressively blurred from the left edge to the 
right edge of the input images. The estimated super-resolved blur pa-
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Fig. 3.6. Experimentation with discontinuous blur variation, (a, b) Two of the low 
resolution Sail images, (c) The true high resolution blur, (d) The estimated super-
resolved blur, (e) The original high resolution Sail image, (f) The super-resolved Sail 
image. 

rameters and the super-resolved text image are shown in Figure 3.8(d) 
and Figure 3.8(f), respectively. The RMSE for the blur parameters in 
this case is 0.051. The same parameter set used in the previous experi
ment is used for the optimization purpose. Since the image field is also 
very discontinuous, a similar change in the values of [i^ and 7^ tend to 
yield a partly improved results. The super-resolution blur recovery is 
very encouraging. The text in the super-resolved image is easily read
able. All these experiments substantiate our claim that both these fields 
can, indeed, be super-resolved. 
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Fig. 3.7. Another experiment with a step-discontinuous blur, (a, b) Two of the low 
resolution Sail images with step variation in blurs, (c) The true high resolution blur. 
(d) The estimated super-resolved blur, (e) The super-resolved Sail image. 

We also experimented on the efficacy of the proposed technique 
by varying the number of available observations K. It was found that 
with further increase in if, there is barely any improvement in the 
quality of the restored fields. However, when we reduced the number of 
observations, there were some degradation in the quality of the output. 
The improvement tends to saturate for a value of Jf = 4 or 5 when 
r = 2. 

The performance of the method was next tested on a real data cap
tured in our laboratory under controlled conditions. The first experi
mental setup was the "blocks world" where three concrete blocks were 
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Fig . 3 .8 . Experimentation for readability of text image, (a, b) Two of the low 
resolution Text images, (c) The true high resolution blur, (d) The estimated super-
resolved blur, (e) The original high resolution Text image, (f) The super-resolved 
Text image. 

arranged at different depths, the nearest one at a distance of 73 cm^ 
another at 82.7 cm and the farthest block at 96.6 cm. All the blocks 
are placed perpendicular to the optical axis of the camera and hence 
there is no depth variation for a particular face of a block. Newspaper 
cuttings were pasted on the blocks to provide some texture as well as 
for the ease of post-operative evaluation. A Pulnix CCD camera fit-
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Fig. 3.9. Four low resolution observations of the "blocks world" captured in the 
laboratory by varying the focus setting of the camera. 

ted with a Pujinon HF35A-2 lens of focal length 3.5 cm was used to 
grab the images. The lens aperture was kept at F1.7. The camera was 
coarsely calibrated using an object at a known depth. Five low reso
lution images, each of size 240 x 260 were captured. Four of them are 
shown in Figure 3.9. Depending on the selection of lens-to-image plane 
distances, one obtains different amount of defocus in different obser
vations. The estimated super-resolved depths are shown in Figure 3.10 
and the super-resolved image is shown in Figure 3.11. As we can see, 
the defocus cue has been able to capture the depth variation quite sat
isfactorily. The root mean square error in the estimation of depth is 
1.768 cm^ which is equivalent to a ranging error of just 1.96%. Also 
the super-resolved image has been recovered quite well as is evident 
from the readability of the text on both the blocks. This is not so in 
the captured images where the texts on either or both the blocks are 
always out-of-focus. The random dot pattern pasted on the lower block 
has also been recovered well. 
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Fig. 3.10. The super-resolved depth estimates in the "blocks world". Here the 
heights are given in cm. 

The second experimental setup consisted of a ball resting on a block. 
The selection of the ball as the scene was motivated primarily to ver
ify the performance of the proposed method when the scene does not 
have much textural content. The block was at a distance of 117 cm 
from the camera. The point on the ball nearest to the camera was at 
121.8 cm while the farthest points, viz., the points lying on the occlud
ing boundary of the ball, were at 132.3 cm, from the camera. Two of 
the five low resolution images each of size 280 x 280 pixels are shown 
in Figure 3.12. We have changed the lens-to-image plane distance in 
our experiments to obtain the differently defocused observations. This 
introduces a small amount of change in magnification in successive 
observations. We neglect the effect in our studies. The super-resolved 
depth is shown in Figure 3.13 in which one out of every four points is 
plotted in order to avoid clutter. The proposed technique has been able 
to capture the spherical depth variation well together with the depth 
of the block on which the ball is resting. The super-resolved Ball image 
is shown in Figure 3.14. The restored image is also of very good quality 
as the characters on the spherical surface are clearly visible. 
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Fig. 3.11. The super-resolved image of the "blocks world". 

3.9 Conclusions 

We have described a MAP-MRF framework for simultaneously gener
ating the super-resolved depth map and the super-resolved image from 
low resolution defocused observations. This method avoids the corre
spondence and warping problems inherent in current super-resolution 
techniques involving the motion cue in the low resolution observations 
and uses a more natural depth related defocus as a natural cue in real 
aperture imaging. Both the super-resolved blur parameter and image 
are modeled as separate MRFs. It is interesting to note that a large class 
of problems in computer vision, such as DFD, super-resolution, opti
cal flow, shape from shading, etc.^ can all be solved in a similar MAP 
framework. The basic structure of the solution remains the same. The 
equations of image formation are written in conjunction with appro
priate priors and the solution is obtained by optimizing the resultant 
energy function. The current method is no exception. 
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Fig. 3.12. Two of the low resolution Ball images. 

Fig. 3.13. The super-resolved depth map of the Ball image. The height is given in 

The use of line fields preserves discontinuities in the super-resolved 
depth and image fields. The super-resolved depth maps have been gen
erated with a very high accuracy. We have chosen the line fields to be 
binary variables in this study. However, one can use continuous vari
ables as well without much changing the problem formulation. The 
advantage of using continuous variable line fields lies in having a differ-
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Fig. 3.14. The super-resolved Ball image. Note that one can read the name of the 
maaufacturer (V. V. TOYS). 

entiable cost function when a gradient-based optimization method can 
be used. Hence the restoration process becomes much faster. 

The quahty of the super-resolved images is also quite good. Through 
the restoration process we are able to obtain an ideal pin-hole equiva
lent image (i.e., there is no depth of field) of an arbitrary scene using 
commercially available real-aperture cameras. However, there are some 
limitations of using the defocus cue for super-resolution. First of all, it 
works for a limited range of depth values in the scene. For a typical 
commercial camera with a 50mm lens, the depth variation in the scene 
should be restricted to only a few meters, with an average depth of 
1 — 2 meters. Beyond this, either the defocus cue is insignificant or the 
scene becomes so badly blurred that the corresponding blur parame
ters cannot be reliably estimated, making the system fail to restore the 
scene. 
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When we change the camera parameters Uke the lens-to-image plane 
distance and the focal length of the lens, there is an associated change in 
the magnification. If this magnification is not negligible, we may have to 
perform a rescaling operation on the observed images before the method 
can be used. Alternately, one can change the aperture size that does not 
result in a magnification. However, one now gets a different amount of 
light intensity at the CCD elements. One may have to adjust the change 
in image brightness through either adjusting the shutter time or post 
processing before applying the method. 

Further, we have assumed a first order smoothness of the fields to be 
estimated to serve as the MRF priors. However, one can obtain a better 
result if the MRF parameters of these fields are known apriori. Ideally 
one would also like to estimate the MRF parameters simultaneously 
while super-resolving them. This issue of MRF parameter estimation 
has been discussed in chapter 8 while using zoom as a cue for image 
super-resolution. 



Photometry Based Method 

In the previous chapter we demonstrated that the depth related defocus 
can be used for image super-resolution. We also mentioned the merits 
and demerits of using the defocus as the cue. One can obtain the struc
ture information also while using the defocus cue. The implicit assump
tion there is that the shape and the intensity fields are independent. 
As explained earher, this assumption may not always hold good due to 
the area foreshortening. Hence we explore if the 3D shape and texture 
can be super-resolved as dependent entities. This is the subject matter 
of the current chapter. We explore a super-resolution technique where 
the 3D shape preservation is used as a constraint while super-resolving 
a scene. Given the observations under difi'erent illuminant positions, 
we obtain the super-resolved image and the spatially enhanced scene 
structure simultaneously. The use of shape cue in the form of photo
metric measurements, instead of the motion cue, eliminates the need 
for image registration. We model the high resolution image, the struc
ture and the albedo of the surface as separate Markov random fields 
and super-resolve them using a suitable regularization scheme. Quite 
naturally, the proposed method is applicable to indoor scenes where 
the ambient illumination can be controlled. 

Image super-resolution using the motion cue in spite of being in
herently a 2D dense feature matching technique, it does not consider 
the 3D structure of the scene being imaged, albeit such an informa
tion is inherently available from the disparity map. Since the structure 
of an object is embedded in the images in various forms, e.g, texture, 
shading, etc.^ it limits the quality of the super-resolved image and its 
applicability for subsequent use in 3D computer vision problems. This 
motivates us to explore a structure preserving super-resolution tech-
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niques. Hence we explore the usefulness of the photometric cue instead 
of the motion cue for super-resolving a scene. Since there is no relative 
motion between the camera and the scene, the super-resolution tech
nique based on the differential sampling of the plenoptic function is 
no longer valid. We decompose the plenoptic function into a number 
of sub-functions and a generalized upsampling process with the prior 
based regularization is used. The problem then can be stated as: given 
a set of observations of a static scene taken with different light source 
positions, obtain a super-resolved image not only for a particular light 
source direction but also for an arbitrary illuminant pattern. In ad
dition, obtain the super-resolved (dense) depth map of the scene and 
the albedo simultaneously. Clearly, by doing this, we get a more accu
rate description of the depth as well as the reflectance properties of the 
scene, which eventually leads to a better performance of the vision task 
at hand. Since such a problem is inherently ill-posed, we need suitable 
regularization of all these fields. We show in this chapter that the entire 
problem can again be expressed as a simple problem of regularization, 
just as it was in the previous chapter, and hence can be solved using 
existing mathematical tools. 

The plenoptic function proposed in [128] is a seven dimensional func
tion which describes the radiance received by the observer along any 
direction, at any point in the space, at any time and over any range 
of wavelength. Existing methods are based on a dense sampling of this 
plenoptic function along the direction or in the space. The time pa
rameter implicitly models the change in illumination and the change 
of scene. When it is constant, the scene is static and the illumination 
is fixed. The authors in [129] have proposed a new formulation of the 
plenoptic function to include the illumination component and call it as 
plenoptic illumination function. They extract the illumination compo
nent from the aggregate time parameter and explicitly specify it in the 
new formulation. Thus when the light source position is changed, new 
information is available at each pixel to capture the surface properties 
of the object. We sample this extended plenoptic function by taking 
photographs of the same scene with different light source positions and 
decompose them into sub-functions, perform a high resolution model 
fitting and obtain the super-resolved image and the structure. 
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4.1 Past Work 

A general survey of work done in the super-resolution area has been 
carried out in chapter 2. We now refer to some specific work that re
late to structure preserving super-resolution. Some researchers have 
already explored the possibility of super-resolving a scene for its in
tensity distribution along with the depth map (surface reconstruction). 
For super-resolution surface reconstruction authors in [130] formulate 
the problem as that of expectation maximization (EM) and tackle it in 
a probabilistic framework using MRF modeling. An iterative algorithm 
is proposed to recover the high resolution albedo and the depth maps. 
They assume that the low resolution images are formed by projecting a 
Lambertian surface of varying albedo onto the lens of a distant camera 
while the surface is being illuminated by a distant light source. Also 
they consider that a sequence of low resolution images are available 
with subpixel shifts keeping the light source position fixed. Initializing 
the super-resolution image to an arbitrary estimate, they first simulate 
the imaging process to obtain a set of low resolution observations. Com
paring these with the observed sequence of low resolution frames they 
minimize a penalty function iteratively, and update the initial guess 
until a stopping criteria is met. 

As already referred in chapter 3, Cheeseman et at [120] use a 
Bayesian method for constructing a super-resolved surface model by 
combining information from a set of images of the given surface. 

Shekarforoush et al use MRFs to model the images and obtain 
a high resolution 3D visual information (albedo and depth) from a 
sequence of displaced low resolution images [119]. The effect of sam
pling a scene at a higher rate is acquired by having interframe subpixel 
displacements. Using a probabilistic interpretation of Papoulis' gener
alized sampling theorem, an iterative algorithm is developed for 3D 
reconstruction of a Lambertian surface at a subpixel accuracy in [131]. 
The generalized sampling theorem gives conditions for reconstructing 
a (/p-bandlimited (Fourier transform F{w) = 0 for \w\ > (p) function 
when it is passed through different filters and the filter outputs are 
sampled. In this context, they assume the low resolution observations 
to contain the recurring samples of a nonuniform sampling sequence 
obtained by applying a common input function to a set of linear shift 
invariant systems. Their reconstruction gives the "emittance" of the 
surface, which is a combination of the effects of surface albedo, illu
mination conditions and ground slope for landsat images. In [132] the 
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authors make use of images from different view points and a neighbor
hood correlation prior with a Gaussian noise model to reconstruct the 
surface. In all these approaches low resolution image frames have to en
tail subpixel overlap and have to be registered at a subpixel accuracy 
which imply a very accurate preprocessing or registration. Errors in 
registration reflect in the quality of the super-resolved image generated 
as well as the structure recovered. 

For super-resolution applications authors in [96] propose a general
ized interpolation method. Here a space containing the original function 
is decomposed into appropriate subspaces. These subspaces are chosen 
so that rescaling operation preserves properties of the original function. 
On combining these rescaled sub-functions, they get back the original 
space containing the scaled or zoomed function. This method allows an 
alias-free interpolation of the original image provided the sub-functions 
satisfy certain bandlimiting conditions. The content in this chapter is 
based initially on their approach, but is extended much beyond to ob
tain both the high resolution intensity and the depth map represented 
by surface gradients and also the high resolution albedo using a suitable 
regularization approach. 

4.2 Generalized Interpolation 

Let us assume that we need to interpolate or zoom up a function f{x). 
Consider the following abstract parametric decomposing of the function 

f{x) = ^{ai{x),a2{x),"',aK{x)), (4.1) 

where ai{x)^ i — 1,2, • • •, if are different functions of the interpolating 
variable x and when they are combined by an appropriate X-variate 
function (̂ , one recovers the original function. Assume that these func
tions a^(x), Vi and (f) are arbitrary but continuous. We can now in
terpolate the individual functions ai{x) and combine them by using 
Eq. (4.1) to obtain rescaled f{x). In [96] such an interpolation tech
nique has been called as generalized interpolation. It has been shown 
in the book that if f{x) is not bandlimited but all these sub-functions 
are bandlimited to a frequency W^ and if these sub-functions are up-
sampled by a factor of r, the corresponding f{x'\r) will be free from 
aliasing artifacts upto a frequency rW. Here we use the symbol t ^ 
to denote the upsampling by the factor r. Let us illustrate with an 
example. Consider 
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f{x) = ai{x)a2{x) = sini(;ia;(l + sinw2x) 

where the bandwidth of f{x) is wi + W2 and it exceeds the individual 
sub-function's bandwidths wi and W2^ respectively. If we sample f{x) 
at a frequency Wg where 2[max{wi^W2)] < Wg < 2[{wi + W2)]'> then the 
function f{x) will be aliased. However, the functions ai{x) and a2{x) 
are not aliased. Hence ai{x t 2)a2{x t 2) will give us an alias-free 
reconstruction oi f{x'\ 2) 

We will now consider how the theory of generalized interpolation 
can be applied to photometric stereo to upsample the image. Given an 
ensemble of images captured with different light source positions, we 
can express the low resolution image Ei{x^y) at a pixel location [x^y) 
for a Lambertian surface by the irradiance equation 

Ei{x,y) = Pi{x,y)n{pi{x,y),qi{x,y)) = pi{x,y)ni[x,y),s, (4.2) 

where ni is the low resolution unit surface normal, s is the unit vector 
defining the light source direction and pi is the low resolution albedo 
of the surface. Here TZ{) is the reflectance model of the surface. The 
surface gradient (p/, qi) is used to specify the unit surface normal given 

by 

ni{x,y) = {-pi{x,y),-qi{x,y),lf /Jl + {pi{x,y))'^ + {qi{x,y)Y. 
(4.3) 

We can recover the surface gradients p;, qi and the albedo by using 
a minimum of three observations for different light source positions 
provided the three equations due to the measurements are linearly in
dependent. Having obtained the surface normal and the albedo for say, 
an M x AT image, a suitable interpolation method is applied individually 
on pi{x^y)^ qi{x^y) and pi{x^y) subspaces to get the spatially magni
fied (denser) surface normal and albedo spaces of dimension rM x riV, 
where r represents the magnification factor. Here Pi{x^y)^qi{x^y) and 
pi{x^y) represent the sub-functions ai(a:,y), a2{x^y) and a^{x^y)^ re
spectively with K = 3 in Eq. (4.1). The interpolated surface normals 
and the albedo are now used to reconstruct the high resolution intensity 
image z{x^y) according to equation 

z{x, y) =^ piix-tr.yt r)ni(a: t r, y t 0 -^ = p{^'> y)n{x,y),s. (4.4) 

Note that we use the subscript / for low resolution field. For the corre
sponding field in high resolution we do not use any subscript. Now in 
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order to obtain (̂ ~̂ , one requires several photometric measurements -
a normal practice in super-resolution imaging techniques to fuse infor
mation from many observations. However the advantage here is that 
one does not require to establish the subpixel registration of differ
ent observations. On the other hand, this method has the disadvantage 
that the measurements cannot be combined directly in the intensity do
main as the illumination pattern is different for each measurement and 
one requires a controlled environment. The advantage of this approach 
to upsampling is that both photometric and structural properties are 
preserved while super-resolving the scene. This is due to the fact that 
the interpolation is carried out on the surface normal and on albedo 
individually. Thus, if both of these fields vary slowly for a given sur
face such that they may be assumed to be bandlimited, an alias-free 
super-resolution is possible. The demerit of the proposal is that the 
method still relies on basic interpolation techniques. The process of 
super-resolving an image does not imply only an alias-free upsampling 
of the image lattice. The issues like blur, noise, and model and data 
inconsistencies must also be addressed. 

Prom Eq. (4.2) and Eq. (4.3) we observe that the image intensity is a 
nonlinear function of the surface normal given by Pi{x^y) and qi{x^y), 
but hnear with respect to the albedo function. As illustrated earlier 
with an example, even if both pi and qi are quite bandlimited, the 
corresponding intensity field Ei{x^y) need not be. Or in other words, 
for a given Ei{x^ y) we expect the functions pi{x^y) and qi{x^y) to vary 
a lot more smoothly than the intensity domain. Hence any interpolation 
technique is expected to serve well for the upsampling of the surface 
normal. Unless the albedo varies very sharply, an alias-free upsampling 
is possible. This is the motivation for developing the contents of this 
chapter. 

4.3 Difficulties with Generalized Interpolation 

The generalized interpolation based upsampling technique as discussed 
in the previous section, although has a sound mathematical footing, 
fails to achieve very good results due to the following reasons. 

1. The interpolation of the surface normal hi{x^ y) should be car
ried out as a vector field and not just pi{x^ y) and qi{x^ y) as separate 
scalar fields. Hence the interpolated surface n{x^y) may not satisfy 
the integrability constraint, i.e., the second order partial derivatives 
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of the depth are not independent of the order of differentiation. Any 
inconsistency may badly affect the high resolution rendering of the 
intensity field using Eq. (4.4). 

2. No spatial constraints in the form of maintaining relationships 
among neighboring pixels are used while interpolating these sub-
functions which are essential in vision problems due to their ill-
posed nature. This helps the solution to converge towards the true 
entity and to provide a numerical stability. 

3. For photometric analysis, a particular reflectance model (say, 
the Lambertian model as used in this study) or the BRDF of the 
scene is assumed. However, in practice it may differ significantly 
from the assumed model and this may lead to a significant departure 
while either estimating the surface normals or recovering the surface 
intensity. 

4. There could be self-occlusion or self shadowed surface patches 
in the image since the viewing direction and the source direction 
are different (for example, see near the mouth of the dog or the 
shadow on the rear side of the shoe in the images given in the results 
section). Since we are using several measurements, it is possible to 
obtain the surface normal even in the shaded region as long as the 
surface patch is visible under at least three different illuminations. 
The use of image irradiance equation (given in Eq. (4.4)) to render 
the shaded image removes any effect due to self-shadowing. 

5. The presence of sensor noise may also affect the quality of the 
reconstructed image. 

6. It is assumed that all observations are free from blurring. It 
is possible that due to improper setting of the camera parameters, 
some or all of these observations are poorly focused. 

A good super-resolution algorithm must take care of all these is
sues while utilizing the photometric cue. In this chapter we present a 
comprehensive scheme under which all the above shortcomings can be 
alleviated. 

We know that it is difficult to interpolate a vector field where the 
integrability relationshipp^^(a;, y) = qx{x^ y) can be ensured everywhere. 
In the literature on shape from shading, this is solved as a regularized 
but unconstrained optimization problem. This ensures that Py{x^y) « 
Qx{x^y)^ where the subscripts x and y refer to partial derivatives. We 
follow a similar integrability constraint here. 
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In order to bring in the contextual or spatial dependency while in
terpolating a sub-function, we use the Markov random field (MRF) to 
model it over a uniformly gridded lattice. The MRF provides a conve
nient and consistent way of modeling context dependent entities such 
as pixel intensities, depth of the object and other spatially correlated 
features. In this work, all high resolution interpolating functions, i.e., 
p{x^y)^ q{x^y) and p{x^y) are modeled as separate MRFs. It should be 
noted that, as it was mentioned in section 4.1, there has been a large 
body of literature on super-resolution technique that models the field 
to be super-resolved as an MRF. The current proposal is different in 
the sense that each high resolution sub-function is modeled as a sep
arate MRF, allowing us to preserve each physical attribute of a scene 
such as the albedo and the 3D structure. 

Let us now discuss how one can rectify errors due to improper mod
eling of the reflectance function. We assume the standard Lambertian 
reflectance model of the surface (without any loss of generahty, as any 
other non-degenerate model would fit our discussion equally well), but 
any practical surface would hardly ever be a Lambertian one. Thus 
the estimation of the low resolution albedo {pi) and the surface nor
mal {ill) based on photometric cues will be quite different from their 
true values. One way to constrain the super-resolved p and n fields to 
stay close to the corresponding true fields is by re-projecting the recon
structed super-resolved image on the actual low resolution observation 
and making sure that they match well. The same constraint also helps 
us to alleviate the problem due to self-shadowing or surface invisibil
ity. Because, if there is self shadowing and the albedo function is not 
appropriately modified while interpolating, the intensity at the corre
sponding surface will be very different from the actual observation. We 
call this as a data consistency constraint. 

In this chapter we refrain from handling the issue of the presence of 
blur in the observations. This is due to the fact that the blur is usually 
unknown. We devote the next chapter entirely on how to handle the 
blur in photometric observations. 

The proposed method can now be illustrated with Figure 4.L We 
obtain K low resolution observations of a static scene by varying the 
direction of a point light source. It is assumed that the directions are 
known failing which they can be estimated using the technique pro
posed in [133]. We also assume that the refiectance model is approx
imately known. One can now obtain a least squares estimate of the 
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Fig. 4 .1 . Illustration of the proposed method of simultaneous super-resolution re
covery of depth and the intensity maps using the photometric cue. 

surface normal 

and the surface albedo pi{x^ y). One can use any interpolation technique 
such as the bilinear or the spline interpolation to up-sample the lattices 
over which these sub-functions are defined by a factor of r to obtain an 
initial estimate of the high resolution structure. Now an optimization 
technique can be developed that explicitly incorporate the constraints 
discussed earlier. As a result, one obtains high resolution estimates of 
both the intensity and the depth maps at a lattice size r times denser 
than that of the given observations satisfying the required constraints. 
In the next section we explain in detail the technique for estimating 
the above high resolution fields simultaneously. 

4.4 Super-Resolution Estimation 

Regularization is the most investigated approach to solve the ill-
posed problems in computer vision, which was originally proposed by 
Tikhonov [134, 135, 136, 137]. Regularization is a popular method for 
interpolating sparse data, as well as smoothing the data obtained from 
noisy measurements. Simply put, regularization looks for an interpolat
ing or approximating function which is both close to the data and also 
"smooth" in some sense. Formally this function is obtained by minimiz
ing an error functional which is the sum of two terms, one measuring 
the distance from the data, the other measuring the smoothness of the 
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function. The MRF based regularization approach is quite amenable to 
the incorporation of information from multiple observations with the 
smoothness function chosen from the prior knowledge of the fields to be 
estimated. The prior knowledge here, serves as a contextual constraint 
used to regularize the solution. 

Let z represent the lexicographically ordered vector containing pixel 
intensities from the high resolution image for a particular light source 
position. Similarly, let p , q and p be the vector representations of the 
high resolution surface gradients and the albedo. The low resolution 
image formation model can be expressed as 

E, , = F c , ( A < 5 , p ) + v^, k = l,...,K (4.5) 

where E/^ is the MN x 1 lexicographically ordered vector containing 
pixels from the k^^ low resolution observation Eii^{i^j). Here Fc,^ indi
cates that these low resolution observations are a function of 

• the decimation matrix D representing the high resolution to low 
resolution image down sampling process, 

• the high resolution structural information S in the scene represent
ing the surface gradients p and q, and 

• the high resolution reflectance field such as the albedo p, with Ck 
denoting the lighting conditions for the k^^ observation. 

In Eq. (4.5) vj^ is the i.i.d Gaussian distributed noise vector with vari
ance Gy. Here K denotes the number of low resolution observations. It 
is quite simple to derive that the solution to a typical high resolution 
restoration problem can be obtained by minimizing the following cost 
function 

e = r f = i | | E , , - Fc,{D,S,p)\\' + \\CiS)f + \\Cip)\f (4.6) 

with respect to the structure and the albedo fields. In the above equa
tion if we drop the decimation matrix D the problem becomes similar 
to the photometric stereo with smoothness constraint [138]. Here £ 
stands for a suitable regularization operator. The above cost function 
does not include constraints on the high resolution field z and the data 
consistency terms. These terms are added in the next subsection. 

4.4.1 M R F Model Based Approach 

As discussed in section 4.3 the MRF model provides a most general 
and powerful approach for prior field modeling and is often adopted 
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in solving computer vision problems. The use of MRF models for the 
priors can allow us a lot more freedom in capturing the neighborhood 
relationships for the individual functions (fields). We know that the 
change in intensity of a scene is usually gradual. Also the the depth of 
a scene and the reflectance function of a scene is gradual. Thus we can 
consider the high resolution intensity field, the high resolution surface 
gradients and the estimated high resolution albedo to be smooth fields. 
We introduce the context dependencies in the estimated high resolution 
image z, by modeling it as an MRF. An alternative way of explaining 
this is that we want the restored high resolution intensity map to be 
smooth one. 

Due to equivalence with the Gibbs random field, the prior term in 
the form of potential energy can be given by U{z). Similarly, the fields 
p , q and p are also modeled as separate (independent) MRFs and 
the corresponding priors are C/(p), C/(q), U{p)^ respectively. The exact 
form of the function [/(.) is given in Eq. (4.7). It is well known that 
in images, pixels with significant changes in intensities carry important 
information such as edges. The surface gradients representing the vari
ation in depth over the surface exhibit a sudden change if there are 
depth discontinuities. Albedo also carries important information about 
the variations in surface reflectance. In order to incorporate provisions 
for detecting such discontinuities, so that they can be preserved in the 
reproduced entity, we also use the concept of line fields located on a 
dual lattice. The use of line fields 1 and v has been explained earlier in 
the chapter 3. Having chosen them as binary variables 1 and 0 we use 
the following energy function C/(w) 

t^(w)=E^c(w) 
cec 

id 

where w = z, p , q, or p as the field we consider. //̂ ^ is the penalty term 
for departure from the smoothness and 7iy prevents the occurrence of 
spurious discontinuities in the estimated fields. Any other potential 
function can also be used if we have some information about the prior 
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model. In absence of any other information about the high resolution 
fields, we restrain ourselves in using the punctuated first order smooth
ness model (estimation of these field parameters has been dealt with 
in chapter 8). Considering the integrability constraint and the data 
consistency constraint, the overall cost function can be obtained as 

e = ||z - p{x t ^, 2/1 r)ni{x t ^, 2/1 'r).sf 

+ A| | (p , -q , ) ( l -n( l -v^)f 
+ U{z) + U{p) + U{q) + U{p) + a||E/ - DHz\\^. (4.8) 

Here H is the camera point spread function (PSF) for any blur which 
may be implicitly present while observing the low resolution images. In 
our study we have considered H as an identity matrix, i.e., the obser
vations are not blurred. If they indeed are blurred, the corresponding 
PSF must be known or estimated. This issue has been discussed in the 
next chapter. Ei{x^y) is the observed low resolution image for a par
ticular light source position for which the super-resolution is sought. 
The matrix D is the decimation matrix, the form of which is given in 
chapter 3. Here a and A are the constants used as weighting factors for 
carrying out the minimization for the observation term and the integra
bility term, respectively. Comparing this cost function with Eq. (4.6) 
we observe that Eq. (4.8) is modified to include the constraint term in 
the high resolution field z and the data consistency constraint (the last 
term). This cost function is non-convex due to the inclusion of line fields 
and is minimized using the simulated or mean field annealing optimiza
tion algorithm in order to obtain the global minima. Having obtained 
the high resolution surface gradients p and q we use the following equa
tion (see [138] for details) to obtain the super-resolved (dense) depth 
map d{x^y) 

V^d(j:, y) = px{x, y) + qy{x, y), (4.9) 

where V^ = ^ + ^ is the Laplacian operator, px ^nd Qy represent 
the derivatives of the estimated high resolution surface gradients along 
X and y directions, respectively. The depth map d{x^y) can be easily 
obtained by iteratively solving Eq. (4.9). At this point one may argue 
that, instead of using the surface gradients p{x^ y) and q{x^ y), one can 
use the depth variable d{x^ y) itself in the formulation since p{x^ y) and 
q{x^ y) are nothing but the partial derivatives of d(x, y). Eq. (4.8) would 
then simplify into 

e ^ ||z - p{x t r ,y t '^)ni{x^;r,y^; r).s\\^ 
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+ U{z) + U{d) + U{p) + a\\Ei - DHzf, 

where ni{x ^ r^y '\ r) is now obtained from the high resolution depth 
field d{x^y). Here the integrability term is no longer needed, and one 
requires to handle one set of variables less. Although this is also a per
fectly vahd method, we continue with Eq. (4.8) due to the motivation 
that generalized interpolation yields better results when the function 
is decomposed into more number of sub-functions, each changing very 
smoothly. 

Now a few words about the different terms used in Eq. (4.8) follow. 
The first term corresponds to the requirement that the reconstructed 
super-resolved image be close to the high resolution image synthesized 
from the shape at high resolution as per the given reflectance model, en
suring structure preservation while reconstructing the image. We need 
a term \\{l>y — qa;)|P to enforce the integrability condition, i.e., to im
pose the condition that the reconstructed surface should correspond to 
a valid physical surface. Since as we are preserving discontinuities in p 
and q by using line fields it is necessary to multiply the integrability 
constraint term with (1 — F ) ( l — v^) where F and v^ are the associated 
horizontal and vertical line-field terms for the fields p and q, respec
tively. This would prevent minimizing the cost due to f/(p) and C/(q) 
terms whenever there is a discontinuity in p or in q, so that the abrupt 
changes in surface gradients are preserved. The integrability condition 
should not be enforced at places of surface discontinuities. 

The next four terms use the MRF prior with the line fields in order to 
provide the local context dependencies for the various high resolution 
fields as defined by U{.) in Eq. (4.7). To enforce a data consistency 
check, we expect that the low resolution observation E^ should be very 
close to the down-sampled version of the super-resolved image z, as 
given in the last term. Since there are K such observations due to 
various locations of the light source, E/ corresponds to that particular 
light source direction for which the super-resolved display of the scene is 
being sought. Thus the last term checks the consistency of the estimated 
high resolution fields against modeling and other errors such as those 
due to self shadowing. It should be noted that the last term is present 
when we super-resolve a view which is part of the set of observations. In 
case we plan to perform a high resolution rendering of view for a virtual 
light source position, we do not have the corresponding measurement 
and hence the last term should be removed from the cost function. Or 
in other words, the data consistency check is possible only when the low 
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resolution observation of a scene for a particular light source position 
is available. 

A comment is now due about the propriety of modeling the inten
sity field z as an MRF when the constituent functions p , q and p have 
already been modeled as separate MRFs. One cannot prove that it is, 
indeed, so. Strictly speaking z is not an MRF due to the presence of 
p and q in the denominator in Eq. (4.3). The locality property as dis
cussed in section 3.7 is no longer satisfied by z. Any local perturbation 
in the fields p or q will ideally result in an infinitely extended pertur
bation in z in spatial domain. A justification for the current method is 
that we simply want to use it as a smoothness constraint and hence we 
choose a simple first order smoothness term as the prior. Alternately 
one may view it as a purely regularization based approach which can 
also be solved using calculus of variations. 

4.4.2 Variational Approach 

As already discussed the MRF model proves to be better in choosing 
the neighborhood relationship among pixels. Thus by making use of 
line fields in deriving the cost helps in preserving discontinuities. But 
the computational complexities shoot up as one cannot use simple op
timization methods such as the gradient descent in order to obtain a 
solution. One way to speed up the computation is to choose a smooth
ness constraint without using the line fields. Although this makes the 
solution a bit too smooth it is very much advantageous computationally 
when compared to the MRF prior with line fields. In order to speed up 
the computation we demonstrate the use of the variational approach. 
In the variational approach one looks for extrema of expression that 
depend on some other functions called functional rather than fixed 
parameters. This leads to a set of diff'erential equations rather than 
ordinary algebraic equations. In general, a problem involving partial 
differential equations is ill-posed without some additional constraints. 
Hence we impose smoothness and other necessary constraints so as 
to make the problem well-posed. Thus we can consider the high res
olution intensity field, the high resolution surface gradients and the 
estimated high resolution albedo all to be smooth fields. In lieu of 
MRF modeling with binary line fields we use the smoothness of the 
MRF prior for the fields to be recovered along with the integrability 
and the data consistency constraints as the regularization term and a 
faster implementation can be obtained using the iterative solution of 
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the corresponding Euler equation. This also helps one to avoid exphc-
itly assuming the intensity field z to be an MRF. By dropping the line 
fields from Eq. (4.8), the error functional (thus, in effect, we are using 
the same MRF parameterization) can be written as 

6== / / V{z,p,q,p,Px,Py:qx,qy,Px,Py,Zx,Zy)dxdy. (4.10) 

The corresponding Euler equations are 

"«-1"'--!"' . = » 

In our case V can be written as 

V = {z{x,y) - n{p,q)f + A K - Qxf 
+ fi,{zl + zD + /3p(p2 + PD + ^^{ql + ql) + ^^(p2 + ^2) 

+ Pd{Ei{x, y) - DHz{x, y)))\ (4.12) 

where z^p^q^p are the high resolution fields and {.)x and {.)y repre
sent their partial derivatives along x and y directions, respectively. 
While TZ represents the reflectance map of the high resolution scene, 
Pz'> Pp'> Pq'> Pp denote the weights for smoothness for each field used in 
the cost functional. The parameters ^2, Pd denote the weightage for 
the integrability and data consistency terms, respectively. The differ
ence between the above equation and the Eq. (4.8) is that no attempt 
is made to preserve the abrupt changes occurring in different fields. 
The advantage is that the Eq. (4.12) is differentiable and hence avoids 
the use of computationally taxing optimization algorithms. But the 
disadvantage is that the solution becomes a bit smooth. 

The Euler equations for the minimization of integral of the func
tional V given in Eq. (4.12) can now be written as 

Vh = ^{z{x,y)-n{p,q)) - ^{Eiix/2,y/2) - DHz{x,y)) 
Pz HZ 
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V^P = - — {z{x,y) - n{p,q))np - -^{pyy - Qxy) 
Pp Pp 

V^^ = - — {z{x,y) - n{p,q)Tlq - -^{qxx-Pyx) 
Pq Pq 

V^p= ~{z{x,y) -n{p,q))np. (4.13) 
Pp 

Since all the terms except Ei{x^y) involve the high resolution field, 
and the updates are carried out on the high resolution lattice {x^ y), we 
use the location (a;/2, y/i) to relate to the corresponding pixel in the 
low resolution observation. We solve the above set of equations using 
the iterative method by approximating the continuous solution by its 
discrete version. We used the initial estimates for z, p , q and p from 
those obtained from the generalized interpolation explained in section 
4.2. The super-resolved fields p and q are then used to estimate the 
high resolution depth field d{x^y) of the scene by using the Eq. (4.9). 

4.5 Experimentations 

We present some of the experimental results to demonstrate the effi
cacy of this regularization based approach for super-resolution image 
and surface reconstruction for a static scene and a camera. All the ex
periments were conducted on real images. The images were captured 
with different light source positions. A controlled environment was cre
ated by capturing the images in a dark room with no ambient light. 
In this arrangement, the distance between the object and the camera 
is much larger than the object size, so that we can assume an ortho
graphic projection. The light source is also located at a sufficiently 
large distance, so that the light source direction can be assumed to be 
constant for the whole surface. 

First we consider an object where the imaged scene gives a smooth 
intensity variation, but has arbitrary depth variations. Eight differ
ent images were captured for varying source directions to recover the 
low resolution albedo and the surface normal for the object. Figure 4.2 
shows the captured low resolution images of the fluffy dog 'Jodu' of size 
235 X 235 pixels each. These pictures were taken for different positions of 
the light source, for example, Figures 4.2(d, h) represent two images for 
the light source positions (0.1763, 0.5596, 1) and (-0.8389-0.7193, 1), 
respectively. Each observation provides some additional information 
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Fig. 4.2. Observed images of a doll 'Jodu' captured with eight different light source 
positions. 

and we want to use this information for super-resolution purposes. The 
bihnearly interpolated image with a magnification factor of r — 2 for 
the observation in Figure 4.2(h) is shown in Figure 4.3(a). The super-
resolved image obtained by interpolating in the p, q^ p space individ
ually and combined using the image irradiance equation, i.e., by using 
only the generalized interpolation scheme (as discussed in section 4.2) is 
shown in Figure 4.3(b). Figure 4.3(c) shows the result obtained with the 
proposed MRF-based method and the super-resolved image using the 
variational approach is shown in Figure 4.3(d). We can clearly observe 
that the estimated super-resolved image obtained with the MRF-based 
method is more sharp revealing better details, such as the fur on the 
body of Jodu. The shadow on Jodu's tongue is better estimated as 
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(c) (d) 

Fig. 4.3. (a) Bilinear interpolation of the image Jodu for the source position given in 
Figure 4.2(h). (b) High-resolution image obtained by using the method of generalized 
interpolation, super-resolved Jodu image (c) using the MRF-based approach, and 
(d) using the variational approach. 

compared to the high resolution image obtained by the generahzed in
terpolation (refer to Figure 4.3(b)) due to data consistency check. Also, 
the shadow under the left eye is also lost due to generalized interpola
tion. The image domain interpolation (refer to Figure 4.3(a)) does not 
suffer from such a problem, as it is obtained directly from the input 
image but it is too smooth compared to what can be achieved using 
the proposed scheme. In order to highlight the sharpness of the picture 
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obtained with the MRF-based method, we draw rectangular boxes at 
three different regions in the images given in Figures 4.3((a) and (c)). 
These highlighted areas do show a substantive difference in sharpness 
in these two figures, justifying the use of the MRF-based technique. 
We can see that the result obtained with the variational approach is 
a bit too smooth as compared to using the MRF-based approach with 
discontinuity preservation. This is quite expected as the cost term for 
minimization does not include the line fields, which means that the 
edges are not well preserved. But it may be noted that due to the data 
consistency term, the shadow on the Jodu's tongue is better preserved 
in both the cases. It may also be noted that the motivation for the vari
ational approach is its almost insignificant computational requirement 
compared to the MRF-based approach. 

We also demonstrate that we can render high resolution views for 
arbitrary light source positions. The super-resolved image correspond
ing to an arbitrary source direction, i.e., one which is not captured as 
an observation, is shown in Figure 4.4. This corresponds to a source 
position (0, 0, 1). The estimated super-resolved image is quite cor
rect as the source position, essentially at the same place as the viewer 
(camera), causes the entire scene to be illuminated. There is no shadow. 
Thus, if the available source positions are insufficient to illuminate a 
particular part of an object, the method is suitable to reveal the details 
there in. 

Fig. 4.4. Super-resolved, synthesized view of Jodu corresponding to a virtual light 
source position (0, 0, 1). 
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We now demonstrate how good is the structure recovery. Fig
ure 4.5(a) shows the high resolution depth map of Jodu image shown as 
an intensity variation using the generahzed interpolation method. The 
brighter it is, nearer it is to the camera. The segmentation of the fore
ground is done using the visibility criterion, i.e., (n.s) should be greater 
than zero. The depth map estimated using the MRF-based method is 
shown in Figure 4.5(b) and the same using the calculus of variations is 
shown in Figure 4.5(c), which compares quite favorably with the depth 
map shown in Figure 4.5(b) obtained using the MRF-based method. 
We do notice an improvement in the depth estimation using the meth
ods discussed; a better depth estimate was observed for the protrusion 
near the tongue and the dip seen near the left eye. These regions are 
highhghted in Figures 4.5((a) and (b)). 

Let us now observe how well the high resolution albedo is recov
ered. Figure 4.6(a) shows the low resolution albedo for the dog image 
recovered from the photometric observations and the estimated high 
resolution albedo using the MRF-based approach is displayed in Fig
ure 4.6(b). Quite expectedly the shadows do not affect the computation 
of albedo. 

We have thus far not mentioned any thing about the choice of pa
rameters in Eq. (4.8) and Eq. (4.12). One can use a cross-validation 
technique to select the best parameter set. However, we refrain from 
doing this in this study. These parameters were chosen mostly in an 
ad-hoc fashion with a little bit fine tuning. As a rule of thumb, we have 
chosen the parameters in such a way that the relative magnitudes of 
each component in the cost function are nearly equal. Thus the values 
of the parameters used for recovering the Jodu image, its surface gra
dients and the albedo using the MRF-based method are jj^z = 0.001, 
l-ip = Hq = jj^p = 100, "Jz = Ip = Iq = 7p = 10, a = 10.0, A = 3.0. Simi
larly the various parameters used in the cost function for the variational 
approach are /?^ = 800, p^ = p^ = p^ = 5000, pd = 300, A = 20. In 
order to reduce the computation time we used the output from the 
generalized interpolation as the initial estimate for both the cases. 

We now consider a scene which has a gradual (almost linear) depth 
variation. We considered sixteen observations for this experiment. Four 
of them captured by varying the light source direction are shown 
in Figures 4.7(a-d). Each of these images have a size of 260 x 260 
pixels. Figure 4.8(a) shows the bihnearly interpolated image for the 
low resolution image shown in Figure 4.7(b) with the source position 
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Fig. 4.5. Super-resolved depth map (a) using the method of generalized interpola
tion, (b) using the MRF-based method, and (c) using the variational approach. 

(0.4663, 0.3523, 1). The image super-resolved with the generahzed in
terpolation scheme is shown in Figure 4.8(b) and the corresponding one 
using the MRF-based method is displayed in Figure 4.8(c). We notice 
again that there is a considerable improvement in the reconstructed 
image. The stitches on the shoe are more clear with sharp transi
tions. Also the image in Figure 4.8(b) suffers from the fact that the 
generalized interpolation cannot handle shadows. Figure 4.8(d) show 
the super-resolved image using the variational approach for compari-
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(a) (b) 

Fig. 4.6. (a) Recovered low resolution albedo of the doll Jodu and (b) the estimated 
high resolution albedo using the MRF-based approach. 

(c) (rf) 

Fig. 4.7. Observed low resolution shoe images captured using four different light 
source positions. 
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Fig. 4.8. (a) Intensity domain magnification with bilinear interpolation for the low-
resolution image shown in Figure 4.7(b), super-resolved shoe image for the same 
source position obtained (b) using the generalized interpolation technique, (c) using 
the MRF-based method, and (d) using the variational approach. 

son. As expected this image is slightly smoother as compared to Fig
ure 4.8(c). Figures 4.9(a, b) show the low resolution albedo recovered 
using the photometric measurements and the corresponding high res
olution albedo using MRF-based approach, respectively. Once again 
all the details are clearly visible in the high resolution albedo as the 
shadows do not affect the calculation of albedo. The values of the pa
rameters used for this experiment for recovering the shoe image and its 
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(a) (6) 

Fig. 4.9. (a) Recovered low resolution albedo of the shoe image and (b) the esti
mated high resolution albedo using the MRF-based approach. 

surface gradients with the albedo are /i^ = 0.005, iip — jiq =^ fip — 2.0, 
7^ = 20.0, 'Jp = "Jq = "Jp = 0.05, a = 10^ X = 5.0. The parameters were 
kept the same as in the previous experiment for minimization scheme 
using the calculus of variations. 

In order to test our algorithm for a higher magnification factor we 
now consider r = 4 for the shoe image with the same set of exper
imental data. We observed that the algorithm works well for higher 
magnification factor as well, as is evident from the results. The val
ues of the various parameters used for this experiment are same as in 
the previous experiment. In this case we show the intensity domain 
super-resolved image for the low resolution image with source position 
(-0.8390, -0.4168, 1) shown in Figure 4.7(d). Figure 4.10 shows the bi-
linearly interpolated shoe image for the corresponding source position. 
The estimated super-resolved image using the MRF-based method is 
shown in Figure 4.11. We notice again that the stitches on the shoe are 
more clear even after such a large magnification. Also the shadow to the 
rear side, just under the pull-up lace flap, is better preserved. Similarly, 
observe how nicely the shadow of the loosely coupled shoe lace on the 
top is preserved in Figure 4.11. Once again we highlight certain areas in 
the images to bring out the improvement in sharpness achieved using 
the proposed method. The estimated high resolution depth maps with 
the MRF-based approach and the generalized interpolation scheme are 
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shown in Figures 4.12 and 4.13. Observe that the intensity from the 
right side of the shoe gradually decreases which is quite correct as the 
shoe was placed at an angle with the sensor plane while capturing the 
image. 

Fig. 4.10. Bilinear interpolation of the shoe image with r = 4 for the image shown 
in Figure 4.7(d) 

We have till now not mentioned about the quantitative performance 
of the approach. We know that it is difficult to give quantitative assess
ment when the true high resolution images are unavailable for reference 
as all the captured images are real. But in order to quantify the per
formance of the proposed approach, all the captured Jodu images were 
first decimated by a factor of r = 2. The decimated low resolution im
age set is used as the input (observations) and the original undecimated 
real images are considered as the true reference. The experiments for 
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Fig. 4.11. Super-resolved shoe image with r = 4 obtained using the proposed 
MRF-based approach for the image shown in Figure 4.7(d) 

super-resolution of intensity field and depth field are conducted on these 
decimated observations. We compare the mean squared error between 
the reference images and the recovered high resolution images and use 
the peak signal to noise ratio (PSNR) as the figure of merit for the 
restored images. The PSNR in decibels (dB) is computed by using the 
following equation. 

PSNR = 10 * logio —^ ^—. (4.14) 

where / and / are the true and estimated entities, respectively and 
M X N IS the size of the image. We compare the performance of the 
MRF-based method with those of the bicubic interpolation and the gen
eralized interpolation in table 4.1. We also compare the performance 
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Fig ;. 4.12. Super-resolved depth map with r = 4 using the MRF-based approach 

of the scheme in terms of the PSNR of the recovered high resolution 
depth map for the experimental set up. In order to generate the refer
ence (true) depth map, we use the photometric stereo to compute the 
surface gradients on the undecimated observations. From the table we 
see that our approach outperforms the bicubic interpolation and the 
method of generalized interpolation by about 0.5 to 3.0 dB in PSNR 
depending on the direction of the light source. We also have a substan
tial improvement in the depth estimation using the proposed method 
as the high resolution estimates of the gradient fields are much better 
due to imposition of smoothness and integrability constraints. 
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Fig. 4.13. Super-resolved depth map with r = 4 using the generalized interpolation 
scheme. 

4,6 Conclusions 

In this chapter we have investigated a regularization based approach to 
simultaneously enhancing the surface gradients and the albedo repre
senting the object shape and the reflectance of the surface and obtain 
the super-resolved image for the scene. The observations for difi'erent 
light source positions were used to obtain the photometric measure
ments. We model the super-resolved image and the structure of the 
object as separate MRF fields. This method avoids the correspondence 
and warping problems inherent in current super-resolution techniques 
involving the motion cue in the low resolution observations. Also the 
method has the advantage that the 3D structure of the scene is better 
preserved during the super-resolution process. We also showed that the 
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Image for 
source position 

(0.8389, 0.7193, 1) 
(0.5773, 0.6363, 1) 
(0.3638, 0.5865, 1) 
(0.1763, 0.5596, 1) 

(-0.1763, -0.5596, 1) 
(-0.3638, -0.5865, 1) 
(-0.5773, -0.6363, 1) 
(-0.8389, -0.7193, 1) 

(DEPTH) 

Bicubic 
PSNR in dB 

Generalized MRF 
Interpolation Interpolation Approach 

35.83 
36.43 
36.17 
34.60 
33.36 
33.32 
33.19 
33.80 

17.78 

30.85 
34.69 
34.32 
31.76 
31.60 
32.49 
32.19 
30.14 

36.16 

36.16 
37.34 
37.54 
37.62 
35.15 
35.27 
35.49 
36.08 
41.82 

Table 4.1. PSNR Comparison for Jodu image for a magnification factor of 2 for 
different source positions. The last row in the table gives the PSNR comparison for 
the depth field. 

same problem can also be solved under the variational approach when 
the line fields are eliminated. The corresponding iterative solution is 
much faster, albeit it yields a little smoother output. 

Naturally there are also several limitations of this particular way of 
super-resolving a scene. We need a controlled environment so that the 
photometric observations can be obtained. This excludes the method 
from being applied to super-resolve an outdoor scene. Further, it is 
assumed that the reflectance model of the scene is known. In many real 
world applications there will be objects in the scene that are either 
metallic or have a chemical paint on them. They behave far from being 
a Lambertian surface. Any specularity on the surface has not been 
accounted for in this study. Nevertheless, this study provides us with 
an idea that, in some cases, it may be advisable not to interpolate an 
image directly. We may be able to perform better (as Table 4.1 suggests) 
by decomposing it into a number of constituent functions or fields and 
upsampling them individually. In chapter 7 we shall demonstrate that 
a principal component analysis (PCA) can be used as an alternative 
way of performing the generalized interpolation. 



Blind Restoration of Photometric Observations 

In the previous chapter we addressed the problem of image super-
resolution using photometric observations. However, we assumed that 
the observations are all free from blurring. Image super-resolution is a 
restoration problem where we attempt to undo the aliasing as well as 
the blurring introduced in the observed images. This chapter addresses 
the problem of simultaneous estimation of scene structure and restora
tion of images from blurred photometric measurements. In photometric 
stereo, structure of an object is determined by using a particular re
flectance model (the image irradiance equation) without considering the 
blurring effect. What we show in this chapter is that, given arbitrar
ily blurred observations of a static scene captured with a stationary 
camera under diflFerent illuminant directions, we still can obtain the 
structure represented by the surface gradients and the albedo and also 
perform a blind image restoration. As before, the surface gradients and 
the albedo are modeled as separate Markov random fields (MRFs) and 
a suitable regularization scheme is used to estimate the different fields 
as well as the blur parameter. The results of the experimentations are 
illustrated with real as well as synthetic images. 

In the existing literature on shape from shading or photometric 
stereo the researchers have treated the problem of shape estimation 
without considering the blur introduced by the camera. This is not 
true when one captures the images with a real aperture camera as the 
blur could be introduced due to camera jitter or out-of-focus blur. The 
variations in image intensity due to camera blur affects the estimates 
of the surface shape. Thus the estimated shape differs from the true 
shape. This limits the applicability of these techniques in image super-
resolution and in 3D computer vision problems. 
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Among many cues that are used for structure estimation, the photo
metric stereo (PS) and the shape from shading (SFS) methods recover 
the shape from the gradual variation in shading. While the PS employs 
two or more observations under different illuminations or light source 
positions, the SFS provides the shape estimation from a single observa
tion. In many practical applications, PS has been found to yield better 
shape estimates. It requires that the entire surface area of the object be 
illuminated from different light source positions and hence gives better 
results with more number of observations taken under different illumi-
nant positions. PS estimates the slope of the surface by measuring how 
the intensity varies with the direction from which they are illuminated. 

As discussed in the next section researchers traditionally treat the 
shape from shading or photometric stereo problem without considering 
the blur introduced by the camera. These approaches assume a pin
hole model that inherently implies that there is no camera blur during 
observation. However, when one captures the images with a camera, 
the degradation in the form of blur and noise is often present in these 
observed image intensities. Some of the low end commercial cameras 
fail to set the auto-focus properly when the illumination is not bright 
- typically the case in photometric measurements. Similarly when the 
illuminant direction is changed for the subsequent shots, the camera 
tries to re-adjust the focus (although there is no need for it as the object 
and the camera are both stationary), and focusing error does creep in. 
It is natural that the variations in image intensity due to camera blur 
affects the estimates of the surface shape. Thus, the estimated shape 
differs from the true shape in spite of possibly having the knowledge 
of the true surface reflectance model. This limits the applicability of 
these techniques in 3D computer vision problems. This motivates us to 
restore the image as well, while recovering the structure. 

The problem can then be stated as follows: given a set of blurred 
observations of a static scene taken with different light source positions, 
obtain the true depth map and the albedo of the surface as well as re
store the images for different light source directions, i.e., estimate the 
true structure and also the images. Since the camera blur is not known, 
in addition, we need to estimate the point spread function (PSF) of the 
blur which caused the degradation. We assume a point light source illu
mination with known source directions and an orthographic projection. 
The problem can be classified as a joint blind restoration and surface 
recovery problem. Since such a problem is inherently ill-posed, we need 
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suitable regularization of all the fields to be estimated, i.e., surface gra
dients as well as albedo. We cast the entire problem as a problem of 
regularization and hence solve it iteratively. 

5.1 Prior Work 

Here we do a quick review of the current status of research in shape from 
shading, which was not covered in chapter 2. Shading is an important 
cue for human perception of surface shape. Researchers in computer 
vision have attempted to use the shading information to recover the 
3D shape. Horn was one of the first researchers to study this problem 
by casting it as a solution to a second order partial differential equa
tion [139]. Shape from shading (SFS) problem is typically solved using 
four different approaches. These approaches include the regularization 
approach, the propagation approach, the local approach and the lin
ear approach. Ikeuchi and Horn [140] were the first to use the energy 
minimization technique using a reflectance model and the smoothness 
constraint. The propagation approach is basically the characteristic 
strip method proposed by Horn [139]. It starts with a solution along a 
special direction and obtains the profile of the surface called character
istic curve along this direction. If we are given initial information as a 
profile along some curve and not just as a point, we can integrate along 
curves starting at a point on this initial curve and obtain the depth 
profile for the whole surface. Pentland [141] uses the local approach 
to recover the shape information by using the image intensity and its 
first and the second derivatives. He assumes that the surface is locally 
spherical at each point. Linear approaches proposed by Pentland [142], 
and Tsai and Shah [143] linearize the refiectance map and solve for the 
shape. 

It is well known that the SFS problem is ill-posed and hence the so
lution may not be reliable. Also, most of the traditional SFS algorithms 
assume that the surface has constant albedo values. This assumption re
stricts the class of recoverable images. The researchers thus attempted 
to solve the problem of shape recovery by using the photometric stereo 
(PS) by making use of multiple images to provide additional informa
tion for robust shape recovery. Even though some of the details of the 
local surface characteristics may be lost due to the least squares ap
proach in PS, the global accuracy, in most cases, is better than the SFS. 
The idea of PS was initially formulated by Woodham [144, 145] and 
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later applied by others [146, 147]. The authors in [146, 147] use multiple 
images using distant light sources at different directions. They consider 
both the Lambertian as well as the non-Lambertian reflectance models 
of the surface. 

Authors in [148] propose two robust shape recovery algorithms using 
photometric stereo images. They combine the finite triangular surface 
model and the linearized reflectance image formation model to express 
the image irradiance. The recovery of albedo values for color images 
using photometric stereo has been considered by Chen et al. [149]. 
They show that the surfaces rendered using the calculated albedo values 
are more realistic than surfaces rendered using a constant albedo. The 
authors in [150, 151, 152] use a calibration object of known shape with 
a constant albedo to obtain the nonlinear mapping between the image 
irradiance and the surface orientation in the form of a lookup table. A 
neural network based approach to photometric stereo, for a rotationally 
symmetric object with a nonuniform reflectance factor is considered in 
[153]. In [154] shape from photometric stereo with uncalibrated light 
sources is discussed. The recovery of the surface normal in a scene using 
the images produced under a general lighting condition which may be 
due to a combination of point sources, extended sources and diffused 
lighting, is considered by Basri and Jacobs [155]. They assume that all 
the light sources are isotropic and distantly located from the object. 

In order to improve the performance of the shape recovery method, 
the SFS algorithm is integrated with the PS in [156]. Here the recov
ered albedo and the depth from photometric stereo are used in SFS 
to obtain a better depth estimate. A different method for obtaining 
the absolute depth from multiple images captured with different light 
source positions is presented in [157]. It involves solving a set of lin
ear equations and is applicable to a wide range of reflectance models. 
Another approach to PS where the input images are matched through 
an optical flow is presented in [158]. The resulting disparity fleld is 
then used in a structure-from-motion reconstruction framework which 
does not require the reflectance map information. Recently, several re
searchers have applied PS to the analysis, description and discrimina
tion of surface textures [159, 160, 161, 162]. It has also been applied 
to the problems of machine inspection of paper [163] and identification 
of machined surfaces [164]. But none of these methods consider the 
presence of blur in the observations. 
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We now discuss, in very brief, a few of the research works carried 
out on image restoration and bhnd image deconvolution. Image restora
tion is probably the area that has attracted the maximum amount of 
research focus over the last three decades, resulting in a huge volume 
of work by many researchers. It will be an injustice if we claim that 
we are doing a literature review on image restoration here. We re
strict ourselves to reviewing only a few relevant papers. The general 
approaches for image restoration include both stochastic and deter
ministic methods. Stochastic approaches assume that the original im
age is a realization of a random field, usually a Markov random field 
(MRF). Maximum likelihood (ML), maximum entropy (ME), and max
imum a posteriori (MAP) approaches are specific types of stochastic 
methods for restoration. The deterministic approaches frequently use 
constraints to make the restoration problem tractable. Popular among 
these methods are projection onto convex sets (POCS) and regular-
ization. For a comprehensive survey of various digital image restora
tion techniques published prior to 1997, the reader is referred to [165]. 
A plethora of methods have also been proposed to solve the prob
lem of blind image deconvolution [166, 167, 168]. A variant of the ML 
estimation, i.e., expectation-maximization (EM) algorithm has been 
used for blur identification and image restoration in [169, 170]. Some 
of the POCS-based iterative restoration techniques are discussed in 
[171, 172, 173, 174, 175]. Recently, Candela et al use local spectral 
inversion of a linearized total variation model for denoising and de-
blurring [176]. The model here consists of a system of partial diff'eren-
tial equations (PDEs) obtained as a local linearization of a variational 
problem. Reconstruction of degraded images corrupted with impulsive 
noise for restoration of digital films is considered in [177]. An unsuper
vised edge-preserving image restoration and estimation of Gibbs hyper-
parameters is discussed by Bedini et al. [178]. They model the image 
to be restored as a Markov random field (MRF) and use a mixed an
nealing algorithm for maximum a posteriori (MAP) restoration which 
is periodically interrupted to compute the ML estimates of the MRF 
parameters. 

As discussed above, the researchers have treated the shape estima
tion and restoration problems separately. For shape estimation using 
the shading cue, the blur introduced by the camera is never consid
ered. We demonstrate in this chapter that both the shape estimation 
and restoration problems can be handled jointly in a unified frame-
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Fig. 5.1. An illustration of an observation system for photometric stereo. 

work. In other words we extract the depth values considering the effect 
of observation blur and restore the image by simultaneously identifying 
the blur parameter using a suitable regularization approach. 

5.2 Observation Model 

Consider a scene illuminated with different light source positions. Fig
ure 5.1 shows the setup for capturing the scene using the photometric 
stereo method. Here we consider that both the object and the camera 
positions are stationary. We capture the images with a large distance 
between the object and the camera, thus making a reasonable assump
tion of orthographic projection and neglect the depth related perspec
tive distortions. The light source is assumed to be a distant point light. 
Under this assumption the incident light rays can be characterized by 
unit vectors. Now given an ensemble of images captured with different 
light source positions, using the theory of photometric stereo we can 
express the intensity of the image at a point using the image irradiance 
equation as 

E{x,y) = p{x,y)n{p{x,y),q{x,y)) = p{x,y)n{x,y).s, (5.1) 

where n is the unit surface normal at a point on the object surface, s 
is the unit vector defining the light source direction and p is the albedo 
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or the surface reflectance of the surface. The surface gradients (p, q) 
are used to specify the unit surface normal given by 

n=(-p,-q,lf/y'l+p2+^2. 

1Z is called the reflectance function. We concentrate on the Lamber-
tian model in our study, but the method can be expanded to other 
reflectance models also. As discussed in the previous chapter, the sur
face gradients (p, q) and the albedo can be recovered using a minimum 
of three observations provided the three equations due to the measure
ments are linearly independent. In practice, one often uses more than 
three observations due to inconsistency of measurement equations and 
a least squares solution is sought. The solution to Eq. (5.1) using the 
different measurements gives the true surface gradients and the albedo 
in the least squares sense only when we do not consider the camera 
blur. However, due to improper focus setting or camera blur the ob
servations are often blurred. Thus, considering the effect of blur the 
observed image in Eq. (5.1) can be expressed as 

g{x,y) = h{x, y) * E{x, y) + r?(x, y), 

where h{x^y) represents the two-dimensional point spread function 
(PSF) of the imaging system, and r}{x^y) is an additive noise intro
duced by the system. Considering K light source positions, the observed 
images can then be expressed as 

9m{x,y) = h{x,y) ^Em{x,y) +Vm{x,y), m = l,'",K (5.2) 

Here Em{x^y) corresponds to the actual shaded image due to the m*^ 
light source position. Prom Eq. (5.1), Em{x^y) is a function of p, p, q. 
It may be noted that, since there is no relative movement between the 
camera and the object, the PSF remains the same for all the obser
vations. This assumption is violated if there is a camera jitter. Note 
that we assume here that there is no chromatic aberration due to the 
lens in the observations. If it does exist, it will affect each color channel 
differently. 

If E ^ is the iV^ x 1 lexicographically ordered vector representing 
the image irradiance for m^^ light source position, and let gm be the 
corresponding observation vector, then using Eq. (5.2), the observed 
images can be modeled as 

g ^ = H{a)'Ern{p,P,Q)+Vm^ m = l,"',K (5.3) 
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where H{a) is a iV^ x AT̂  matrix with a representing the blur parameter. 
Em is the true focused image for the m*̂  hght source position and is 
of size A/"̂  X 1. Note gm is a function of the surface gradients and the 
albedo as seen from Eq. (5.1). We assume that the blur is due to the 
camera out-of-focus which can then be modeled by a pillbox blur or by 
a Gaussian PSF characterized by the spread parameter a [105]. We also 
assume that the blur is space invariant. This is tantamount to assuming 
that the variation in depth in the object is very small compared to its 
distance from the camera. Hence H becomes a block-Toeplitz matrix 
representing the linear convolution operator. Here r/^ is the iV^ x 1 
noise vector which is zero mean i.i.d Gaussian. Our problem now is to 
estimate the blur parameter a, the albedo p, the surface gradients p and 
q, and also perform blind image restorations given the observations g^n, 
m = 1, • • •, if. This is an ill-posed inverse problem, requiring a suitable 
regularization. 

5.3 Restoration and Structure Recovery 

As we are using a regularization based approach for simultaneous es
timation of different parameter fields (p, q, and p), we need to use 
suitable priors for the fields to be estimated. As discussed in earlier 
chapters, the MRF provides a convenient and consistent way of model
ing context dependent entities such as image pixels, depth of the object 
and other spatially correlated features. Once again we model the struc
ture p and q, and the albedo p as separate MRFs. 

5.3.1 Structure and Image Recovery with Known Blur 

For an easier understanding, we first consider the case where we esti
mate the albedo, the surface gradients and also restore the image when 
the blur is known. This will be relaxed in the next subsection. 

The proposed method can be illustrated using Figure 5.2. We obtain 
K observations of a static scene by varying the direction of the point 
light source. It is assumed that the directions are known. We also as
sume that the reflectance model is known. One can now obtain a least 
squares estimate of the surface gradients {p^^\x^y)^ Q^^H^^y)) and the 
albedo p^^\x^y) assuming that the observations are free from blur, 
which are used as the initial estimates. Expectedly these estimates are 
quite poor due to blurred observations. We introduce the context de
pendencies in the estimated fields by modeling them as separate MRFs. 
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Fig. 5.2. Illustration of how the image and the structure can be recovered when 
the blur PSF is known. 

Thus the corresponding priors are i7(p), U{q)^ and U{p). We use the 
following energy function C/(w) for each of the fields i7(p), f/(q), and 
U{p). 

N-2 N-2 

k=l 1=1 

(5.4) 

where w = p, q, or p. Here fi^ is a penalty term for departure from 
smoothness. Thus considering the brightness constraint term and the 
smoothness term for regularizing the solution, the final cost function 
can be expressed as 

m = l 
H{a)Iimip,P,q)f + f/(p) + U(q) + U(p). (5.5) 

This cost function is convex and can be minimized with respect to the 
fields p, q, and p using a gradient descent method. The initial estimates 
p(o)̂  q(o)̂  and p^^^ are used here to speed up the convergence. Having 
obtained the estimated fields p, q, and the albedo p one can obtain the 
restored image for a particular light source direction by using Eq. (5.1). 
Since the surface gradients p and q are already estimated, it is straight 
forward to restore the depth d{x^ y) of the scene, which is obtained by 
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solving the Eq. (4.9) iteratively, where px and Qy now represent the 
derivatives of the estimated surface gradients in x and y directions and 
not the super-resolved fields. It should be noted here that we are not 
performing direct image deconvolution which is highly ill-posed and 
leads to numerical instability. 

5.3.2 Blur Est imation 

We now extend the method to a more realistic situation in which the 
blur PSF a in H{a) is also unknown. In order to do that we must 
estimate the amount by which an image is blurred. When the images 
are captured with a camera, the blur phenomenon could occur due 
to various reasons even when the camera is stationary. Thus it is re
quired to estimate the blur while restoring the image and estimating 
the structure. Considering that the unknown blur is due to the effect 
of improper focusing, it can be modeled by a Gaussian PSF, when we 
need to estimate the blur parameter a (standard deviation) that deter
mines the severity of the blur. We have already discussed in chapter 3 
how the blur parameter can be efficiently computed using the method 
proposed in [109]. This is due to the fact that the blur is parameterized 
by a single parameter a, 

Since the blur is mostly due to camera defocus, the PSF can be 
easily parameterized by a single parameter a. Hence the PSF estimation 
problem simplifies drastically. Let g{x^y) and f{x^y) be two images 
with a being the blur parameter where g{x^y) represents the blurred 
image while f{x^y) is the true focused image. Then g{x^y) can be 
expressed in terms of f{x^y) by a simple convolution operation as 

g{x,y) = h{x,y; a) * f{x, y). (5.6) 

Using the fact that blur PSF h{x^y;a) is Gaussian, it can be ex
pressed as 

h{x,y;a) =:^^e 2cr^ . (5.7) 

Now taking the the Fourier transform on both sides of Eq. (5.6), 
and making use of the derivation given earlier in chapter 3, one can 
show that 

-'-JL 
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Fig. 5.3. Illustration of the proposed method for image and structure recovery 
when the blur PSF is unknown. A comparison with Figure 5.2 shows that we have 
added another block "Estimate blur" to estimate the blur between (g^, Ej^ ^^). 
Further, the output of this block is fed back to the optimization block to improve 
the structure estimation. 

where ^ is a small region in the frequency domain and A is the area 
of A. Compare this equation with Eq. (3.6) derived in chapter 3. One 
may notice that the only difference is that we set ai = a and a2 = 0. 

5.3.3 Structure Recovery and Blind Image Restoration 

The blur estimation technique as discussed in the previous section 5.3.2 
gives the estimate of blur only when the true focused image /(a;, y) and 
its blurred version g{x^ y) are available. But our problem is to estimate 
the blur given only the blurred observations, since the true focused 
images for different light source positions, i.e., Em{x^y) in Eq. (5.2), 
are unknown. In this section we describe an approach for simultane
ously estimating the blur parameter and the structure, given only the 
blurred photometric observations. As already mentioned, for blind im
age restoration we use a Gaussian blur which can be parameterized by 
the standard deviation a. 

An iterative approach for joint structure recovery and blind image 
restoration can be obtained by suitably modifying the block diagram 
given in Figure 5.2. The approach is schematically presented in Figure 
5.3. Using the photometric stereo we obtain the least squares estimates 
of the fields p , q and p that serve as the initial estimate as before. 
The optimization as given in Eq. (5.5) is carried out with these initial 
estimates using an initial value of the blur parameter a^^\ The cost 
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function in Eq. (5.5) is minimized for p , q, p keeping a^^^ constant. 
Having estimated p , q, and p, we obtain a revised estimate of a as 
follows. The new estimates of fields p^'^^ q (^ \ p^^^ are used in image ir-
radiance Eq. (5.1) along with the source directions to get the estimates 
of the focused images for different light source positions. We then obtain 
the new estimate of a^^) by using the Eq. (5.8) holding p ( ^ \ q (^ \ p^'^^ 
constant. Here the blurs {a) are calculated between the observed im
ages g i , g2, • • • 7 gK and the estimated images E^^\ t^^\ . . . , E ^ ) a n d 
the average value of the estimated blur parameter a is used as the up
dated one. This new value of (j(^) is then used again in the optimization 
(Eq. (5.5)) to update the fields p , q, p. The blur parameter and the 
structure (along with the images for different light source directions) 
are then estimated in an alternative way by keeping the blur parameter 
constant and updating the structure and vice-versa. The estimation of 
blur parameter and the different fields are carried out until the con
vergence is obtained in terms of the update for the parameter a^'^\ 
The blur thus obtained is the final estimated one. The corresponding 
gradient fields are then used to calculate the depth map. It should be 
mentioned here that the mask size chosen for the PSF should be suffi
ciently large compared to the value of G. Typically we use the size to 
be larger than 6cr. Since a is not known, we use the PSF kernel size 
to be 13 X 13 pixels as the defocus blur during the experimentation 
is rarely expected to exceed a — 2 pixels. Further, one may note that 
there has been no attempt to perform any deconvolution of the ob
served data after having estimated the blur parameter. Experimentally 
we found that such an effort always leads to an inferior performance 
compared to that of the proposed method. The complete procedure is 
summarized below in terms of the steps involved. 

STEP 1: Obtain initial estimates pW, q(^), p^^) using the photometric 
stereo on blurred data. 

STEP 2: Choose an initial blur parameter cr(^). Typically a^^) = 0. 
STEP 3: Set n = 0. 
STEP 4: Update the albedo and the scene structure 

{p(n+i)^q(n+i)^^(n+i)| ^ arg min{C/(p) + U(q) + U(/9) 
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m=l 

STEP 5: Resynthesize focused images E i , E2, -"^'EK for different 
light source positions using the Eq. (5.1) 

i ( - + i ) (x, y) = p(-+i) {x, y)n{p^-^'^ {x, y),q^-^' {x, y)). 

STEP 6: Estimate the blurs between (gi, E^"""^^ )̂, (g2, E^"""^^ )̂, • • •, and 

(g/cE^"^^^) using the Eq. (5.8) after replacing F by T[Ei]. 

(J'. 
.(n+l) A— I / —^ ^log ^̂^ ^-^—dwxdwy. 

\ A J JAWI + W^ ^J^[Ei]{w,,wy) " ' 

for the i^^ pair and calculate the average value of blur (j('^+i) 
from K such observations. Here j^[Ei] represents the Fourier trans
form of Ei. Readers are requested to make note of this departure 
of the symbol. 

STEP 7: Set n = n + 1 and go to step 4 until the convergence in the 
estimate of a is obtained. 

STEP 8: Solve for depth using Eq. (4.9) 

\/'^d{x, y) =Px{x,y)+ Qy {x, y). 

A comment about the convergence of the proposed technique is now 
in order. Like many similar optimization algorithms wherein one alter
nately estimates two sets of parameters by freezing one of the sets and 
updating the other set of parameters, a global convergence cannot be 
proved. However, it has been shown in [179] that the computation is 
quite stable and it converges to a local minima. Since steps 5 and 6 
in the above description involve nonlinearities, a good initial estimate 
may be required for obtaining a quality solution. As per the observa
tion of [179], even an initial estimate of cr = 0 provide a good starting 
point. We have carried out extensive experiments under varying initial 
conditions and different measurement sets and we never experienced 
any difficulty in convergence. We also experimented on simulated data 
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sets when the observation noise is quite high and the amount of defocus 
blur is large. Under such taxing circumstances we found the estimate 
of the blur parameter a to be a bit underestimated. Barring the above 
case, the convergence of the blind restoration method has been found 
to be very satisfactory. 

5.4 Demonstrations 

5.4.1 Experiments with Known Blur 

We now demonstrate the efficacy of the regularization based approach 
to shape recovery from blurred observations. First we show the experi
ments on real images for image restoration, depth recovery and albedo 
estimation when the blur is known. The parameter for the gradient 
descent algorithm i.e., the step size is chosen as 0.01 for the estimation 
of all the three fields namely, p , q and the p. The same value is used 
in all experiments in this section. The camera blur were simulated by 
using a uniform circular blur mask, i.e., the captured images with dif
ferent light source positions were convolved with the uniform blur mask 
which are then used as blurred observations. This blur approximates 
an out-of-focus blur as a pillbox function, and is used in many research 
simulations [165]. Here the blur is parameterized in terms of the win
dow size and is modeled as a uniform intensity distribution within a 
circular disc of radius 6, 

^^^'^^ \ 0 , otherwise. 

First we consider an object where the imaged scene gives a smooth 
intensity variation, but has arbitrary depth variations. We continue 
with the images of Jodu shown in chapter 4. Figures 5.4(a) and (b) 
show two of the eight focused images (before being blurred) with source 
positions (-0.8389, -0.7193, 1) and (-0.3639, -0.5865, 1), respec
tively. The blurred images using a mask of size 5 x 5 i.e., & = 2 for the 
same source positions are shown in Figures 5.5(a) and (b), respectively. 
The corresponding restored Jodu images using the suggested approach 
are shown in Figures 5.6(a) and (b), respectively. It can be observed 
that because of the blurring the edge details are lost (see Figure 5.5). 
We note that these details are very well recovered using the proposed 
approach. Observe the shadow and the bisecting line on the tongue 
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in the restored image as depicted in Figures 5.6(a) and (b). For the 
sake of comparison, we show the restored images through direct image 
deconvolution (using the MATLAB function ^^deconvlucif^ that follows 
the Lucy-Richardson algorithm) in Figures 5.6(c, d). As expected the 
result obtained under direct deconvolution is poor when compared to 
the proposed approach (see Figures 5.6(a, b)). See the nose, tongue and 
the hind leg regions of the doll and compare the performances. 

(a) (6) 

Fig. 5.4. Focused images of Jodu captured with two different light source positions. 

Now we consider how well the depth map can be recovered from the 
blurred observations. Figures 5.7(a) and (c) show the depth map as ob
tained from the PS using the focused images (not suffering from blur) 
and the estimated one using the proposed method from blurred ob
servations, respectively, displayed as an intensity variation. The depth 
values were calculated with the estimated values of p and q by using 
the Eq. (4.9) and then scaled between 0 and 255. The brighter it is, 
nearer it is to the camera. The depth map using the surface gradients 
obtained from a standard photometric stereo (PS) applied directly on 
the blurred images is shown in Figure 5.7(b). This result does not ac
count for the presence of blur in the observations. It can be clearly 
seen that the estimated depth shown in Figure 5.7(c) using the pro
posed technique is very much similar to the depth map due to focused 
images shown in Figure 5.7(a). The distortion introduced in the depth 
map shown in Figure 5.7(b) is very much removed in Figure 5.7(c). The 



114 5 Blind Restoration of Photometric Observations 

(a) (6) 

Fig. 5.5. Simulated blurred observations of Jodu using a mask size of 5 x 5 for the 
images for two different source directions shown in Figure 5.4. 

depth distortion near the chest and the mouth region is clearly visible. 
We observed an improvement in terms of the MSE (mean squared er
ror) as well. The MSE calculated between the true depth map (Figure 
5.7(a) that does not have blurring) and the depth map due to blurred 
Jodu observations (Figure 5.7(b)) was 0.0784, while it reduced to just 
0.0005 for the depth map obtained using the proposed approach. Thus, 
there is a substantial improvement in the recovered depth map. 

Next we consider the goodness of the recovered albedo. Figure 5.8(a) 
shows the recovered albedo using nonblurred, focused observations and 
Figure 5.8(c) corresponds to the recovered one using the proposed tech
nique. As seen from the figures, the shadows do not affect the compu
tation of the albedo. Figure 5.8(a) represents the true albedo subject to 
the object surface satisfying the assumption of a Lambertian surface. 
The result of albedo recovery using the standard PS method applied on 
the blurred observations without any rectification for the blurring effect 
is shown in Figure 5.8(b). Comparison of Figures 5.8(b) and (c) clearly 
indicate that due to the blurring process, the recovered albedo does not 
give the true reflecting property of the surface when the blurring effect 
is not compensated. The resulting albedo is very smooth. 

In order to test the performance this algorithm for a higher amount 
of blur, we now consider a blurring mask size of 9 x 9 with b ~ A. We 
observed that the algorithm works well even for a higher amount of 
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(c) (d) 

Fig. 5.6. (a, b) Restored Jodu images for the observations given in Figure 5.5 using 
the proposed approach assuming the blur to be known, (c, d) Restored Jodu images 
using the image domain deconvolution operation. Compare Figure (a) with Figure 
(c) and Figure (b) with Figure (d). 

blur, as is evident from the results. For this experiment we considered 
a region that shows only the face of the doll, and the number of images 
were kept as eight, same as used in the previous experiment. Figures 
5.10(a, b) show the simulated blurred observations corresponding to 
the focused (pin-hole approximation) images depicted in Figures 5.9(a, 
b). The restored images for the same using the proposed approach are 
shown in Figures 5.11 (a, b). We notice again that there is a consid-
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(c) 

Fig. 5.7. (a) True depth map as obtained from PS using the observations not 
suffering from blurring, (b) Depth map obtained using the standard PS method 
on blurred observations, (c) Recovered depth map using the proposed technique 
utilizing the knowledge of PSF. 

erable improvement in the reconstructed images. The high frequency 
details are clearly restored back as is evident from the protruding nose 
and eye boundaries of the dog. We show the result of image restoration 
using direct deconvolution in Figure 5.12. Comparing these results with 
those obtained using the proposed approach in Figures 5.11 (a, b), once 
again we observe that the reconstructions using the proposed approach 
are much better. When the blur is very severe, the direct image decon-



5.4 Demonstrations 117 

(c) 

Fig. 5.8. Recovered albedo (a) from the nonblurred or focused images, (b) using 
the standard PS on blurred observations, and (c) using the proposed technique. 

volution techniques offer poor results. However, the indirect method of 
image restoration yields a much better results. 

The estimated depth map (Figure 5.13(c)) is quite comparable to 
the true depth map shown in Figure 5.13(a). The depth map calculated 
using the standard PS method applied on the blurred observations 
using the surface gradients recovered from the blurred images looks 
smooth, lacking the depth variation (see Figure 5.13(b)). 

Once again we investigate how well the albedo and the structure 
are recovered for severely blurred observations. The recovered albedo 
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(a) (b) 

Fig. 5.9. Focused images of Jodu captured with light source positions (a) 
(-0.8389, -0.7193, 1), and (b) (-0.1763, -0.5596, 1), respectively. 

(a) ib) 

Fig. 5.10. Simulated severely blurred observations of Jodu using a mask size of 
9 X 9 for the images shown in Figure 5.9. 

(a) (b) 

Fig. 5.11. Restored Jodu images using the proposed method. 
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(a) (6) 

Fig. 5.12. Restored Jodu images in Figure 5.10 using direct image deconvolution. 

(a) (6) (c) 

Fig. 5.13. (a) True depth map without considering the blur, (b) Depth map ob
tained from direct appHcation of PS on blurred observations, (c) Reconstructed 
depth map using the proposed technique. 

map using the proposed technique and the albedo map estimated using 
the PS on the blurred observations are shown in Figures 5.14(b, a). As 
can be seen from the figures, the recovered albedo estimated from the 
blurred observations appears too smooth indicating that the albedo is 
very poorly estimated when the observations are blurred and are not 
rectified. 

5.4.2 Experiments with Unknown Blur 

We now present the results for the more general case where the blur is 
unknown and need to be estimated along with the estimation of scene 
structure and the image restoration. Here we consider experiments us-
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(a) (b) 

Fig. 5.14. (a) Surface albedo for Jodu computed from blurred data, (b) Estimated 
albedo using the proposed technique. 

ing the real images as well as the synthesized ones. First, we consider 
an experiment using synthetic images for validation purposes. For this 
experiment, we generated a set of eight images of a spherical surface 
for different source positions. An arbitrary texture (albedo) is mapped 
onto this surface. The corresponding images are shown in Figures 5.15. 

The sphere had a checker-board patterned albedo. The obtained im
ages are then blurred by using a Gaussian blur mask of size 7 x 7 with 
a standard deviation of cr == 1 and are corrupted by adding a Gaussian 
noise of zero mean and a standard deviation of 0.01 for a normalized 
gray value of pixel in the range [0, 1]. The blur is not assumed to be 
known during the restoration process. We used an initial value of 0.6 
for a for this experiment and a mask size of 13 x 13. The final esti
mated a for this experiment is 1.0352 which is very close to the actual 
defocus blur. Of the eight images generated with different light source 
positions, we show experimental results on two images with source po
sitions (0.45, 0.80, 1) and (—0.20, -0.60, 1) that correspond to figures 
(a) and (f) in Figure 5.15. The corresponding simulated blurred and 
noisy observations are shown in Figure 5.16. Figures 5.17(a, b) show 
the efficacy of our algorithm for the estimation of true texture from 
their blurred observations. Compare these images to the original im
ages in Figures 5.15((a) and (f)) and observe that the blind restoration 
is very good. We see that the boundary curves on each segment in 
the restored checker-board images are sharper when compared to the 
blurred observations indicating the restoration of high frequency de-
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(9) (h) 

Fig. 5.15. Synthesized images of a sphere for eight different Hght source positions. 

tails. The images restored using the standard image domain blind de-
convolution are shown in Figures 5.18(a, b). The estimated depth map 
(Figure 5.19(b)) is also quite correct as the intensity is highest at the 
center and decreases as we move away from it which definitely reflects 
the shape of a hemisphere. The shape distortion seen in the depth map 
of Figure 5.19(a) recovered from the blurred observations using the 
standard PS method clearly indicates the loss of depth details. 
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(a) (b) 

Fig. 5.16. Simulated observations using a Gaussian blur a = I and additive noise 
corresponding to figures in 5.15(a) and (f). 

(a) (6) 

Fig. 5.17. Restored checker-board images using the proposed technique. 

(a) (b) 

Fig. 5.18. Restored checker-board images using a standard image domain blind 
decon volution. 
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(a) (b) 

Fig. 5.19. Recovered depth map using (a) standard PS method, and (b) proposed 
method. 

Finally we consider the experiments with a real data set for blind 
restoration and structure estimation, for which we use the same object 
Jodu captured with eight different light source positions. However, no 
attempt was made to bring the object Jodu in focus and hence the 
observations are slightly blurred. Common in real aperture imaging, 
the blur due to defocus is modeled by a Gaussian shaped PSF param
eterized by the variable a. The blurred observations are then used to 
derive the fields p^^^, q(^) and the p(^) which are used as the initial es
timates for our algorithm as discussed in section 5.3.3. Again an initial 
value of a = 0.6 and a mask size 13 x 13 (which is the same as used in 
the previous experiment) were used in order to estimate the different 
fields and to restore the images iteratively. After every 100 iterations 
in gradient descent operation to estimate the surface normals, the new 
value of a is calculated and is used again to refine the fields related 
to structure and albedo, and the images. The algorithm is terminated 
when no further improvement in the estimate of a is obtained. The 
final estimated a for the given example was found to be 1.0577. The 
results of the experiment are illustrated with the following figures. 

Two of the blurred observations are shown in Figures 5.20(a, b). 
The restored Jodu images for the same are displayed in Figures 5.21 (a, 
b). As can be seen, the restored images have sharper details. Observe 
the nose, mouth and tongue regions. The blur which is clearly visible 
in Figures 5.20(a, b) is well removed in Figures 5.21 (a, b). The re
stored images through the blind image deconvolution (using the MAT-
LAB function '^deconvblind^) are shown in Figures 5.22(a, b). For the 
MATLAB-program, the PSF mask size and the initial value of a were 
kept the same as used in the proposed approach and the number of 



124 5 Blind Restoration of Photometric Observations 

iterations were again chosen as 100. As we can see from the figures, 

the restoration is quite poor. The images shown in Figures 5.21 are 

definitely sharper than those in Figure 5.22. 

(a) (b) 

Fig. 5.20. Observed images of Jodu with an arbitrary camera defocus for two 
different Hght source positions. 

(a) (6) 

Fig. 5.21. Restored Jodu images using the proposed method. 
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(a) (6) 

Fig. 5.22. Restored Jodu images using a standard blind deconvolution tool. 

We also look at the quality of depth and albedo recovery for these 
observations. Although it is difficult to visualize much perceptual im
provement in the estimated depth map using the proposed technique 
from that obtained using a standard PS method on blurred observa
tions due to the use of gray levels to encode the depth map (see Figures 
5.23(b, a)), there is a definite perceptual difference when the depth is 
viewed as meshplots. The corresponding plots are displayed in Figure 
5.24. As can be seen from the meshplot, the recovered depth map cor
responding to the standard PS method is smoother when compared to 
the plot for the proposed approach. There was also a noticeable change 
in the estimated p and q fields using these two methods. Since it is 
difficult to visualize the p and q fields for an arbitrary shaped object, 
we display only the recovered depth maps. The process of smoothing 
the gradient fields using the expression 

V'^d{x,y) =Px{x,y) -\-qy{x,y) 

to obtain the depth map somehow blurs the difference between the two 
results. However, we did observe a gain in terms of accuracy in the 
estimated depth map measured in terms of the MSB (mean squared 
error). The MSE between the depth map due to focused observations 
shown in Figure 5.7(a) and the depth map shown in Figure 5.23(a) 
was found to be 0.0100, whereas it was only 0.0045 considering the 
depth map obtained using the proposed method. This clearly indicates 
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an improvement in the depth map estimation using the proposed algo
rithm. Similar conclusions about the efficacy of the proposed scheme 
can also be drawn from the Figures 5.25(a, b) for the albedo recovery. 
The recovered albedo is sharper when the proposed method is used. 

(a) (b) 

Fig. 5.23. Recovered depth map using (a) standard PS method, and (b) proposed 
method. 

Fig. 5.24. Recovered depth map shown as a mesh plot using (a) standard PS 
method, and (b) proposed method. 
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(a) (b) 

Fig. 5.25. Recovered albedo using (a) standard PS method, and (b) proposed 
method. 

5.5 Conclusions 

We have described a method for simultaneous estimation of scene struc
ture and bhnd image restoration from blurred photometric observa
tions. The structural information is embedded within the observations 
and, through the unified framework we have described, we were able to 
recover the restored images as well as the structure. We model the sur
face gradients and the albedo as separate MRF fields and use a suitable 
regularization scheme to estimate the different fields and the blur pa
rameter alternately. No problem was faced regarding the convergence of 
the proposed method during the experimentations. Experiments were 
carried out on the synthetic as well as the real images to show the 
efi'ectiveness of our approach. 

Although we do not discuss the super-resolution aspect in this chap
ter one can now easily extend it to the super-resolution problem dis
cussed in chapter 4 where we neglected the presence of possible blur in 
the observations. The contents of these two chapters can be combined to 
handle super-resolution reconstruction from photometric observations 
even in the presence of unknown blur. 



Use of Learnt Wavelet Coefficients 

Until chapter 5 we assumed that a number of observations of the same 
scene under varied camera or lighting conditions are available for image 
super-resolution. In particular we investigated the usefulness of defocus 
and photometric cues for high resolution reconstruction purposes. Now 
we relax the above requirement of having to have multiple observations. 
We show that instead of multiple observations of the same scene, if we 
have a set of high resolution observations of an arbitrary set of objects 
as exemplars it may suffice as we may still be able to improve the 
resolution of the given image. 

In this chapter we investigate a learning based super-resolution 
restoration technique by using the wavelet coefficients to define a con
straint on the solution. Only a single image is used for super-resolution. 
An arbitrary set of high resolution images are taken as training images. 
Wavelet coefficients at finer scales of the unknown high resolution im
age are learnt from a set of high resolution training images and the 
learnt image in the wavelet domain is used for further regularization 
while super-resolving the picture. We use an appropriate smoothness 
prior with discontinuity preservation in conjunction with the learnt 
wavelet based prior to estimate the super-resolved image. The smooth
ness term ensures the spatial correlation among the pixels whereas the 
learnt wavelet term chooses the best high resolution edges from the 
training set. Since this amounts to extrapolating the high frequency 
components, this method does not suffer from oversmoothing effects. 
The results demonstrate the effectiveness of this approach. The ad
vantages of this method would include avoidance of point correspon
dences, no need to estimate the blur and there is no need to model the 
reflectance property of the surface. 
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6.1 Introduction 

In many applications more than one low resolution observations may 
not be available, but we may have a database of a number of similar 
or arbitrary images at a higher spatial resolution. For example we may 
have a snapshot of an object or a person alone. In order to have a 
better view, we may interpolate the image to double its size. At places 
where there are not much of variations in gray levels or no edges, any 
interpolation technique would yield acceptable results. However, any 
edge in the low resolution image would get blurred when interpolated. 
Noting the fact that sharpness of edges are very crucial for image rep
resentation and perception, we ask the question if the high resolution 
edges can be learnt from the high resolution training data to replace 
the corresponding low resolution edges while upsampling, thus avoid
ing edge smearing. This is the primary motivation for developing the 
contents of this chapter. 

In this chapter we consider having an access to a set of high resolu
tion training images to learn the edge prior. The basic problem we solve 
in this chapter is as follows. One captures an image using a low resolu
tion camera. We are interested in generating the super-resolved image 
for the same using a set of available high resolution images of different 
objects. It is assumed that the high frequency contents to be extrap
olated are locally present in the training set. We use a wavelet-based 
multi-resolution analysis to learn the wavelet coefficients at a given lo
cation at the finer scales for the image to be super-resolved. The learnt 
coefficients are then used as a prior that enforces the condition that 
the wavelet coefficients at the finer scales of the super-resolved image 
should be locally close to the best matching coefficients learnt from the 
training set. In order to preserve the spatial continuity of the restored 
image, we use a smoothness constraint in conjunction with the learnt 
prior to obtain the super-resolved image. 

Since edges in the image are places where one requires a better 
clarity, there have also been some efforts in the literature on preserv
ing the edges while interpolating an image. Chiang and Boult [62] 
use edge models and a local blur estimate to develop an edge-based 
super-resolution algorithm. In [180] authors propose an image interpo
lation technique using a wavelet domain approach. They assume that 
the wavelet coefficients scale up proportionately across the resolution 
pyramid and use this property to go down the pyramid. Thurnhofer and 
Mitra [181] have proposed a non-linear interpolation scheme based on a 



6.2 Wavelet Decomposition of an Image 131 

polynomial operator wherein perceptually relevant features (say, edges) 
are extracted and zoomed separately. Different reconstruction methods 
to improve the resolution of digital images while zooming have been 
discussed in [182]. The authors here focus on both the linear and the 
non-linear methods based on total variation to study the ability of these 
methods to preserve the directionality of the edges while zooming. 

It was mentioned earlier in chapter 2 that researchers have also 
attempted to solve the problem by using learning based techniques 
[97, 98, 100, 101]. Here the new information required for predicting 
the high resolution image is obtained from a set of training images 
rather than from subpixel shifts among low resolution observations. 
The method investigated in this chapter can also be classified under 
the learning based super-resolution schemes. However, here we use a 
different type of learning where we use a prior term that enforces the 
condition that the wavelet coefficients of the super-resolved image at 
the finest scale should be locally close to the best matching wavelets 
learnt from the high resolution training set. A smoothness constraint 
is imposed on the restored image to obtain a regularized solution. 

6.2 Wavelet Decomposition of an Image 

Wavelets are mathematical functions that split up data into different 
frequency components locally, and then study each component with a 
resolution matched to its scale. They have advantages over traditional 
Fourier methods in analyzing physical situations where the signal con
tains discontinuities or a local analysis is required. The discrete wavelet 
transform (DWT) provides us with a sufficient information for analysis 
and synthesis of a time series data or an image and is easier to im
plement. The idea here is similar to the continuous wavelet transform 
(CWT) which is computed by changing the scale of the analysis, shift
ing the window in time, multiplying it by the data and integrating over 
time. In the case of DWT, filters of different cut-off frequencies are em
ployed to analyze the sequence at different scales. The input sequence 
is passed through a series of high pass and low pass filters to analyze 
the high and low frequency components, respectively. The procedure 
starts with passing the sequence through a half band (0 — 7r/2 radians) 
digital low pass filter with impulse response ^(n), thus removing all 
the frequencies that are above half of the highest frequency in the se
quence. The filtered output is then subsampled by a factor of 2, simply 
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by discarding every other sample since the sequence now has a highest 
frequency of 7r/2 radians instead of TT. The low pass filter thus halves 
the resolution, but leaves the scale unchanged. The subsequent subsam-
pling by a factor of 2, however, changes the scale. Subsequently the low 
pass signal is passed through another low pass filter whose passband 
is just half of the previous filter bandwidth. The process is continued 
several times until a coarse description of the signal is achieved at a 
desired level. This is illustrated in Figure 6.1 

i|(n) 

| B W = 0 - 7 C 

BW= 71/2-

Level 1 DWT coefficients 

BW=7C/4-7t/2 

BW= 0-71/2 

h(n) 

rBW=0-7C/4 

Level 2 DWT coefficients 

F i g . 6 . 1 . Illustration of subband wavelet decomposition. Here u{n) is the original 
sequence to be decomposed and h(n) and hf{n) are low pass and high pass filters, 
respectively. The bandwidth of the resulting signal is marked as "BW". 

The wavelet transform for a 2D sequence is similar to that of ID 
decomposition. A 2D wavelet decomposition is first performed (hori
zontally) on the rows by applying low pass and high pass filters. Then 
we perform the same operations vertically (on the columns) resulting 
in four subbands LL, LH, HL, HH. Here L stands for the lower band 
signal and H stands for the higher band. Needless to say, we assume 
that the filter kernel is separable so that the wavelet decomposition 
can be carried out along the rows and columns separately. We repeat 
the operation with 'LL' as the input image for further decomposition. 
We illustrate wavelet decomposition of an image in Figure 6.2. An in
put image is shown in Figure 6.2(a). The corresponding 3-level wavelet 
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decomposition is shown in Figure 6.2(b). Note that in the top left we 
have the down sampled dc component. 

Wavelet analysis of a signal, by itself, is an actively pursued area 
of research. There are many text books available for a comprehensive 
discussion on this topic. We refrain from introducing this topic here. 
We do assume a certain familiarity with this topic by a reader in this 
chapter. The readers are referred to [183, 184, 185] for further discussion 
on wavelet decomposition. 

fJ^Ki^Bi^ 
^ j g i i 

'^•^:~^\;&m^^ 

(a) (b) 

Fig. 6.2. Illustration of wavelet decomposition of an image, (a) Input Lena image, 
and (b) the corresponding 3-level wavelet decomposition. 

6.3 Learning the Wavelet Coefficients 

As discussed in the previous section the wavelet decomposition splits 
the data into high and low frequency components. As seen from Figure 
6.1, given a high resolution sequence u{n) having a bandwidth support 
of [0 — TT], it can be decomposed into UL and UH sequences constituting 
the low frequency and the high frequency components in the sequence, 
respectively. Let us consider that UL (the low resolution sequence) is 
given and we need to generate the high resolution sequence u{n). In 
order to do that we need to know the UH SO that when we take the 
inverse discrete wavelet transform (IDWT) we get back the original 
sequence u{n). However, for the current problem on super-resolution, 
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we do not have the high frequency components UH to obtain the high 
resolution sequence u{n). In the absence of any information on UH^ we 
plan to estimate the coefficients UH by learning them from a set of high 
resolution sequences. 

Similarly, when a low resolution image or a 2D signal is considered 
we need to learn the corresponding unknown high frequency compo
nents ULH-) UHL and UHH' Since the problem of super-resolution in
volves handling data at multiple resolutions, and since the wavelets 
are best suited for a multi-resolution analysis, it motivates us to use 
a wavelet-based approach for learning the wavelet coefficients at the 
finer resolution. These wavelet coefficients indicate the high frequency 
details in an image. For example, in the illustrative Figure 6.2(b) all 
three quadrants other than the top-left one display the high resolution 
components or the edges in the image. The top-right quadrant shows 
the vertical edges, the bottom-left quadrant shows the horizontal edges 
and the bottom-right the diagonal edges. These edge information are 
needed to reconstruct the high resolution image given in 6.2(a). If these 
quadrants are not available, as is the case in low resolution observa
tions, can they be learnt? 

The learning of higher band wavelet coefficients is done from a set of 
high resolution training images. If the high resolution data in a region 
does not have much high frequency components, the region can easily 
be obtained from its low resolution observation through a suitable in
terpolation. However, if a region has edges, the corresponding wavelet 
coefficients {UH in Figure 6.1) are quite significant and they cannot be 
neglected while obtaining the high resolution image. These coefficients 
must be learnt from a database of training images. We assume that a 
primitive edge element in the high resolution image is localized to an 
8 x 8 pixel area, and we observe the corresponding edge elements over 
a 4 X 4 pixel area in the low resolution image. From the high resolution 
data base, can we obtain the best 8 x 8 region by matching it in the 
wavelet domain with the given 4 x 4 pixel observation? Note that such 
a matching should be brightness (dc-shift) independent. 

We make use of a two level wavelet decomposition of the given low 
resolution observation while learning the wavelet coefficients at the finer 
scale. Figure 6.3 illustrates the block schematic of how the wavelet co
efficients at finer scales are learnt from a set of N training images using 
a two level wavelet decomposition of the low resolution test image. The 
high resolution training images are decomposed into three levels and 
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Fig. 6.3. Illustration of learning of wavelet coefficients at a finer scale, (a) A Low res
olution image with a two level wavelet decomposition. Wavelet coefficients (marked 
as x) in subbands shown with the dotted lines sire to be estimated for subbands 
VII — IX. (b) High resolution training set in wavelet domain with three level de
compositions. 

the test image is compared to the training images in the wavelet domain 
at the coarser two scales. This decomposition is used to extrapolate the 
missing wavelet coefficients in subbands VII — IX (shown as dotted 
in Figure 6.3(a)) for the test image. They correspond to the estimated 
high pass wavelet coefficients at the finest level decomposition of the 
unknown high resolution image. Here the low resolution image is of size 
M X M pixels. Considering an upsampling factor of 2, the high resolu
tion image, now has a size of 2M x 2M pixels. For each coefficient in the 
subbands / — / / / and the corresponding 2 x 2 blocks in the subbands 
IV — VI^ we need to extrapolate a block of 4 x 4 wavelet coefficients 
in each of the subbands F / / , VIII and IX. 

In order to learn the wavelet coefficients we exploit the idea from 
zero tree concept, i.e., in a multi-resolution system, every coefficient at 
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a given scale can be related to a set of coefficients at the next coarser 
scale of similar orientation [186]. Using this idea we follow the minimum 
absolute difference (MAD) criterion to estimate the wavelet coefficients. 
We take the absolute difference locally between the wavelet coefficients 
in the low resolution image and the corresponding coefficients in each 
of the high resolution training images. The learning process is as fol
lows. Consider the subbands 0 — VI of the low resolution image. De
note the wavelet coefficient at a location (i, j ) as il;{i^j). Consider the 
range 0 < i, j < M/4 . The wavelet coefficients ipi{i^j + M/4) , ipnii + 
M/4 , j ) , il^ni{i + M/A^j + M/4) corresponding to subbands I — 
III and a 2 X 2 block consisting of {V^/y(A:,/+ M/2)}^3;|"M=^'+\ 

{V v̂(A: + M / 2 , 0 } g S r ' ^ ' ' {V'y/(fc + M/2 , / + M/2)}£21^^^^^^ in 
each of the subbands IV — VI are then considered to learn a 4 x 4 
wavelet block in each of the subbands VII — IX consisting of unknown 
coefficients {^vn{Kl + M)f^^,^Jp^\ {i^vni{k + M , / ) } £ ; + f f ^•+^ 

and {ipix{k + M, / + M)}^^^^?'^"^^^ -̂̂ -̂  we need to estimate or learn 
these 48 coefficients for every 4 x 4 region in the low resolution image. In 
order to illustrate which set of wavelet coefficients we select for learning 
purposes, we denote them with 'x' marks in Figure 6.3(a). To obtain 
the wavelet coefficients for the test image at a finer resolution, we con
sider the wavelet coefficients in subbands / — VI in each of the high 
resolution training images (see Figure 6.3(b)). We search for the best 
matching training image at a given location (i, j ) that matches to the 
wavelet coefficients for the test image in the subbands / — VI in the 
MAD sense and copy the corresponding high resolution wavelet coeffi
cients in subbands VII — IX to those subbands for the test image. In 
effect, we use the following equation to find the minimum. 

m{hj) = argimn{|V'/(i,i + M/4) - 4 ' ^^ ( i , i + M/4) | 

+ \i;n{i + M / 4 , i ) - V^i7^(i + M/4 , j ) | 

+ \ipiii{i + M/4, j + M/4) - ^^;^]{i + M / 4 , i + M/4) | 

+ E E \i^iv{Kl-\-M/2)-i;^/^\kJ + M/2)\ 
k=i l=j 

k=i-\-S i = j + 3 

+ E E lV'v(A: + M/2,/)-V^ir^(fc + M / 2 , 0 | 
k—i l—j 
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A;=2+a(=j+3 

k=i l—j 

(6.1) 

where m = 1,2, • • •, iV. Here "ipj denotes the wavelet coefficients for 
the m*^ training image at the J*^ subband. For each (i , j) in sub-
bands / — / / / of low resolution observation, a best fit 4 x 4 block of 
wavelet coefficients in subbands VII — IX from that training image 
given by rh{i^j) which gives the minimum are then copied into sub-
bands V / / , VIII^ IX of the observed image. In effect, Eq. (6.1) helps 
in matching edge primitives at low resolutions. Thus we have, 

i^viiihj) — V^vj/l^^i), 

for (i, j ) G subbands {VII — IX). Here m is the index for the training 
image which gives the minimum at location («,j). This is repeated for 
each coefficient in subbands / , / / , / / / of the low resolution image. 
Thus for each coefficient in subbands / — / / / , we learn a total of 16 
coefficients for each of the subbands VII — IX from the training set. 

It may be mentioned here that each 4 x 4 region in the low res
olution image could be learnt from different training images. In case 
the error (MAD) term in Eq. (6.1) is quite large, it signifies that the 
4 x 4 block does not find a good match in the training data, i e . , an 
edge primitive does not have its corresponding high resolution repre
sentation in the database. In order to avoid such spurious learning, we 
accept the wavelet coefficients only when the MAD is less than a cho
sen threshold. The goodness of the learning depends on how extensive 
and useful is the training data set. In our experiments we use Daub4 
wavelet bases for computing the discrete wavelet transform. The issue 
of which particular wavelet basis best fits the learning scheme has not 
been investigated in this chapter. 

The subband 0 corresponds to the low resolution portion 'LL' (see 
Figure 6.3(a)) in the wavelet decomposition and since the corresponding 
'LL' portions in the training set may have different brightness averages, 
inclusion of the pixels from 'LL' portion of the low resolution image 
does not yield a good match of an edge primitive as we want the edges 
to be brightness independent. Hence, we refrain from using the 'LL' 
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portion of the low resolution image for learning. The complete learning 
procedure is summarized below in terms of the steps involved. 

STEP 1: Perform a two level wavelet decomposition of the low resolu
tion test image of size 
M X M and three level decompositions of all training images each 
of size 2M x 2M. 

STEP 2: Consider the wavelet coefficients at locations (i, j -f M/4) , 
{i + M/4 , j ) and (i + M/4, j + M/4) in subbands / , / / and / / / , 
and the corresponding 2 x 2 blocks in subbands IV — VI of the low 
resolution image as well as the high resolution training set. 

STEP 3: Obtain the sum of absolute difference between the wavelet 
coefficients in the low resolution image and the corresponding coef
ficients for each of the training images. Obtain the best match. 

STEP 4: If MAD < threshold, obtain the unknown high resolution 
wavelet coefficients (4x4 block) from the appropriate training image 
for each of the subbands VII — / X , else set them all zeros. 

STEP 5: Repeat steps (2 - 4) for every wavelet coefficient in subbands 
/ — VI of the low resolution image. 

A few comments about the learning of the wavelet coefficients are 
in order now. The high frequency coefficients are estimated using the 
nearest neighbor criterion from the training images. The process is not 
adaptive in the sense that no adaptive updating of these coefficients 
is performed based on previously learned values at a given location 
or from its neighborhood. The coefficients have to be learned afresh 
at every location. Furthermore, there is no reinforcement of the learnt 
coefficients through a posterior analysis. This may yield inferior values 
of the coefficients, but the advantage is that one does not have to worry 
about the convergence issues. A similar learning procedure is typically 
adopted in other learning based techniques in super-resolution, such as 
in [97, 100]. 

In this study we select a 4 x 4 edge primitive in the low resolution 
image for learning the coefficients. A smaller primitive could provide a 
better localized result, but more spurious matches negate the advan
tage. A larger primitive yields even better matches in the coefficient, 
but the localization is poor and the reconstruction suffers from severe 
blockiness. Furthermore, the requirement for the training data size goes 
up drastically when the size of the edge primitive is increased. 
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6.4 Regularization with Wavelet Prior 

With the wavelet coefficients learnt from the high resolution training 
set as discussed in the previous section, we would like to obtain the 
super-resolution image for the given low resolution observation. Since 
we pick up the high frequency components of each 8 x 8 region as per 
the best fit edge element from different training data independently, 
there is no guarantee that the corresponding high resolution image 
would be a good one as it lacks any spatial context dependency. One 
may occasionally find an unwanted abrupt variation across the 8 x 8 
blocks. In order to bring in a spatial coherence during the high reso
lution reconstruction, we must use a smoothness constraint. Thus the 
constraints are chosen based on enhancing the edges as well as ensuring 
the smoothness of the high resolution image. Near the edges in the low 
resolution image, we learn the wavelet coefficients from the high resolu
tion database to have edge preserving upsampling. Also a smoothness 
constraint is enforced while upsampling at relatively smooth regions. 

We use the wavelet coefficients learnt from the training set to enforce 
the constraint that the wavelet coefficients of the super-resolved image 
should be locally close to the best matching wavelet coefficients learnt 
from the training images in a least squares sense. Let Ẑ y be wavelet 
transform of the high resolution image z(i, j) to be estimated and Zw be 
the wavelet transform of the learnt image as discussed in the previous 
section. Then the learnt prior term can be expressed as 

C(z) = | |Z^-Z^| |2 . (6.2) 

Now in order to enforce the smoothness constraint we make use of the 
fact that the image pixel intensities have a spatial correlation. But this 
constraint pushes the reconstruction towards a smooth entity. Hence 
in order to enforce a smoothness in the smooth regions alone while up-
sampling, we use a discontinuity preserving smoothness prior. Since the 
high frequency details learnt by using the wavelet-based prior consti
tute the discontinuities it would ensure undistorted edges in the super-
resolved image while smoothing the regions with spatial continuity. 
In order to incorporate provisions for detecting such discontinuities, 
so that they can be preserved in the reconstructed image, the binary 
variables lij and Vij which detect the horizontal and vertical edges, 
respectively, are used. The use of line fields in the context of MRF 
modeling has already been explained earlier in chapter 3. It may be 
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noted that we are not modeling the high resolution image as an MRF 
unlike in previous chapters. The line fields are included to preserve the 
discontinuities while smoothing the edges. We use the following prior 
for the smoothness constraint in this study. 

+ {ZiJ - Zi-ij) (1 - kj) + {Zi^lJ - Zij) (1 - /i+l,j)] 

+ 7[/ij + /^+i J + Vij + Vij^i]}^ (6.3) 

Here /j> is the penalty term for departure from the smoothness. The sec
ond term in the above equation enforces a penalty for over-punctuation 
in the smoothness constraint. In effect we are considering only a first 
order spatial relationship along with the scope for handling the discon
tinuities. Thus by making use of the data fitting term, the learning term 
and the smoothness constraint the final cost function to be minimized 
for the high resolution image z can be expressed as 

e = | | y - i ? z | | 2 + /3C(z) + C/(z), (6.4) 

where D is the decimation matrix and /3 is a suitable weight. The above 
cost function is nonconvex and also consists of terms in both spatial do
main (the first and the third term) and in wavelet domain (the second 
term). Hence it cannot be minimized by using a simple optimization 
technique such as gradient descent since it involves a differentiation of 
the cost function. We minimize the cost by using the simulated anneal
ing technique which is expected to lead to a global minima. However, in 
order to provide a good initial guess and to speed up the computation, 
the result obtained by using the inverse transform of the learnt wavelet 
coefficients is used as the initial estimate for z. 

We now explain the various terms in Eq. (6.4) with respect to the 
wavelet-based learning method. The first term relates to the consistency 
in data fitting. If z is the actual high resolution image, we observe that 
||y — J5z|p need not be zero as the chosen decimation operator D as 
defined in Eq. (3.12) need not be close to the wavelet decomposition 
( LL image in Figure 6.3) of the high resolution image, in general. 
The above is true only for Haar basis. However, the use of Haar basis 
introduces a lot more blockiness in the reconstructed image when the 
third (smoothness) term becomes very large. Alternately one may set 
all the wavelet coefficients in the finer subbands to be zero prior to 
taking the inverse wavelet transform. Although this may be similar in 
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idea to the sine interpolation, the corresponding interpolation results 
are quite inferior. The choice of Daub4 as the basis function in the 
study was more on an ad hoc basis, and a proper selection of the basis 
function would be an interesting topic of research. The selection of 
various weighting parameters in Eq. (6.4) was based on the idea that 
each term in the equation should have comparable magnitudes when 
the algorithm converges to the high resolution image. 

6.5 Experimental Illustrations 

We demonstrate the efficacy of the proposed technique to super-resolve 
a low resolution observation using the wavelet coefficients learnt from 
a high resolution training data set. 

First we consider experiments with face images. A number of high 
resolution images of different objects were downloaded from the In
ternet arbitrarily to use them as a training set. We considered a high 
resolution training set of size N = 200. The same training data set 
has been used in all experiments. We show a random sample of these 
images as thumbnails in Figure 6.4 

We notice that we have images of faces, indoor and outdoor scenes 
all mixed up in training set. In order to obtain a low resolution test 
image, we consider a high resolution image from the training set and 
downsample it by a factor of 2. Figure 6.5(a) shows one such low reso
lution face image of size 64 x 64. Figure 6.5(b) shows the same image 
upsampled by a factor of 2 using the bicubic interpolation technique. 
The super-resolved image is shown in Figure 6.5(c). A comparison of 
the Figures 6.5(b) and (c) shows more clear details in the super-resolved 
image. The features such as eyes, nose and the mouth appear blurred in 
the interpolated image shown in Figure 6.5(b), while they are restored 
well in Figure 6.5(c). Also the eye balls are sharper in the displayed 
super-resolved image. However, one can see some amount of blockiness 
at chin boundaries. It has been experimentally found that the best re
sults are obtained with the parameters fj. — 0.01, 7 = 25, and the weight 
for the learning term ^ = 0.08. These parameters were selected so that 
all the components in the cost function (refer to Eq. (6.4)) have com
parable contributions. We retain the same values for the parameters in 
all subsequent experiments. 

We show the results of experiments on another face image. The low 
resolution observation obtained by down sampling the high resolution 
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Fig. 6.4. A random sample of the training images used in learning the wavelet 
coefficients are shown as thumbnails. 

Fig. 6.5. (a) A low resolution observation (facel), (b) bicubic interpolated image, 
and (c) the super-resolved image using the proposed approach. 

Lena image is shown in Figure 6.6(a). The super-resolution result ob
tained using the proposed approach is displayed in Figure 6.6(c), and 
Figure 6.6(b) shows the bicubic interpolated image. Once again we 
see that the high frequency details are better preserved in the super-
resolved image. Various surface boundaries are much sharper. The hair 
strand on the shoulder and the lace on the hat appears more clearly. 
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(c) id) 

Fig. 6.6. (a) Another low resolution observation (Lena), (b) bicubic interpolated 
image, (c) the super-resolved image, and (d) the result of simple pixel replication. 

The eyes and the nose are also clear. However, we observe some block-
iness on the boundary curves of the hat and the slanted structure on 
the upper right corner of the picture. Since, the edge primitives are 
chosen over a 8 x 8 block in the wavelet domain, the learnt edges may 
suffer from blockiness. The smoothness constraint is supposed to take 
care of such jaggedness. However, the given choice of parameters in the 
smoothness term fails to undo the jaggedness. An increase in the weight 
for the smoothness term may render the solution very smooth and this 
may not be desirable. We could have played with the parameter set 
in Eqs. (6.3) and (6.4), but the various parameters for recovering the 
super-resolved image for this experiment were kept the same as used 
in the previous experiment. But this blockiness is nothing compared 
to the blockiness one obtains when a simple pixel replication is used. 
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Comparing this with the simple zero order hold expanded image shown 
in Figure 6.6(d) (in which every feature in the image appears blocky), 
we see that the blockiness is quite tolerable here. In order to test the 

lemsmm ^f^mt^ 

Fig. 6.7. (a) Low resolution observation of a building, (b) upsampled by bicubic 
interpolation, and (c) the super-resolved image. 

algorithm for an image which has prominent edges, we considered a 
portion of a building image. The results for the same are shown in 
Figures 6.7(b-c) with the low resolution observation depicted in Figure 
6.7(a). We can clearly see that the discontinuities are better estimated 
in the super-resolved image shown in Figure 6.7(c), but they appear 
blurred in the bicubic interpolated image (see Figure 6.7(b)). This sub
stantiates our claim that the learning of wavelet coefficients does help 
in improving the resolutions. 

We now consider a few experiments on the color image super-
resolution. For these experiments we first convert the low resolution 
color image into Y — Cb — Cr format. The learning of the wavelet coeffi
cients is then done using the Y (luminance) plane only. The recovered 
high resolution image in the luminance plane after optimization is then 
combined with the bicubic interpolated version of the data in low reso
lution Cb — Cr planes in order to obtain the super-resolved color image. 
The idea is quite similar to the way a macroblock is represented by 
4 : 1 : 1 DCT blocks in the Y -Cb-Cr domain while using an MPEG 
coder. The training images used were kept the same as in the previous 
experiments on gray scale images. One may note here that learning of 
the wavelet coefficients for the y, C^, and Cr planes can also be done 
separately in order to obtain the super-resolution on each of the low 
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Fig. 6.8. (a) A low resolution observation, (b) upsampling using the bicubic inter
polation, and (c) the super-resolved image using the proposed approach. 

Fig. 6.9. (a) Another low resolution face image, (b) upsampling using the bicubic 
interpolation, and (c) the super-resolved image using the proposed approach. 

resolution images. However, we refrain from doing it in this chapter 
as any possible error in learning in any of the color planes may intro
duce chromatic distortions and the human vision appears to be very 
sensitive to that. 

We show results of two experiments conducted on the color face im
ages. However, the results are shown here in gray tone. Figure 6.8(c) 
shows the result of the proposed approach on a low resolution observa
tion shown in Figure 6.8(a). Compare this with the bicubic interpolated 
image shown in Figure 6.8(b). We observe that the super-resolved im
age appears sharper. Few areas of interest where such an enhancement 
can be observed are the mark on the left chin, eye balls and the hair. 
Some amount of blockiness can be observed near the ear. The results 
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for another low resolution face image are displayed in Figures 6.9(a-c). 
Similar conclusions can again be drawn from this experiment. Observe 
the eye balls, eye brows, frontal hair, chin and the nose shown in Figure 
6.9(c) which appear sharper when compared to the bicubic interpolated 
image given in Figure 6.9(b). However, some blockiness does appear 
along the silhouette. Thus we may conclude that the approach works 
well for color images as well. 

In order to convey the comparative edge over the conventional in
terpolation techniques, we show the PSNR during interpolation for the 
gray scale images. Table 6.1 shows the comparison of the proposed 
method with the standard bilinear interpolation and the bicubic inter
polation. In order to be able to compute the PSNR, we started with 
a high resolution image and the decimated version of that was used 
as the low resolution observation. We can observe that in addition to 
the perceptual betterment in all observed images there is also a gain in 
PSNR for the wavelet-based approach. This illustrates the usefulness 
of the wavelet-based learning scheme in super-resolving the images. 

Method 
Bilinear 
Bicubic 

Proposed 

facel 
30.87 
31.54 
32.74 

Lena 
26.84 
27.57 
28.05 

building 
25.23 
26.27 
26.97 

Table 6.1. Comparison of PSNR achieved under different schemes. 

6.6 Conclusions 

We have described a method for super-resolution restoration of images 
using a wavelet-based learning technique. The wavelet coefficients at 
finer scales, learnt from a set of several high resolution training images, 
are used as a constraint along with an appropriate smoothness prior to 
estimate the super-resolved image. The learning term selects the best 
high resolution edges from the training set given a low resolution obser
vation, while the discontinuity preserving smoothness term ensures a 
proper spatial correlation among pixel intensities. The results obtained 
for both gray scale and color images show perceptual as well as quan
tifiable improvements over conventional interpolation techniques. The 
method is useful when multiple observations of a scene are not available 
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and one must make the best use of a single observation to enhance its 
resolution. 

An inherent drawback of this learning method is that the learning 
process is very much resolution dependent. If we want to super-resolve 
a 2m/pixel satellite image by a factor of r = 2 the training data must 
be of Im/pixel resolution. If one wants to perform super-resolution 
on a 2.5m image, none of the images in existing database could be 
used for training. For a commercial camera, if we change the zoom 
factor, it requires that a completely different set of training images 
be provided. Even if the zoom provides the details of a scene at a 
higher resolution, the wavelet-based approach fails to make use of this 
information. This provides us with the motivation to develop a different 
scheme for image super-resolution where the incremental information 
about a scene through camera zooming can be handled efficiently. This 
will be discussed in chapter 8. 

Another major difficulty with wavelet-based learning lies in the fact 
that the wavelet decomposition kernel is separable. Although this pro
vides computational advantages, we expect to catch only the horizontal 
and vertical edges properly. Hence we do not have difficulties in learning 
horizontal and vertical edges, but we do have some problem in learning 
edges oriented along arbitrary directions. This leads to blockiness in 
the learnt edges. A better way to handle this is to use directionally 
selective wavelet decomposition to learn the oriented edges. A recent 
development in oriented multi-resolution analysis include the concepts 
curvelet, contourlet, edgelet, ridgelet, etc. [187, 188, 189, 190, 191]. It 
will be nice to explore the usefulness of these concepts in learning the 
oriented edge better. 

We observe that the edge primitives have been defined locally and 
then they are learnt from the database images. Thus the learning is lo
cal and independent and hence it required the imposition of a smooth
ness constraint. Is it then possible to define the learning process glob
ally? This would then eliminate the problem of blockiness in the re
constructed image. However, the global learning would imply that the 
input image should be somehow globally similar to the training images. 
We explore this issue in the next chapter. 



Extension of Generalized Interpolation to 
Eigen Decomposition 

In chapter 4 we demonstrated that any function may be decomposed 
into a set of sub-functions and each of these sub-functions may be 
suitably interpolated to upsample the given function. We decomposed 
the image intensity function in terms of structural and albedo compo
nents and showed that a better high resolution representation of the 
image can be obtained. Motivated by the above, we ask the question if 
any other alternative form of decomposition is possible. Such a decom
position should have some advantages over traditional image domain 
interpolation. 

In this chapter we show that the same concept of generalized inter
polation developed with respect to decomposing a function in terms of a 
number of subfunctions can also be applied to a finite dimensional vec
tor space. In particular we explore an eigen-image based high resolution 
reconstruction technique. Eigen-images of a database of several simi
lar training images are obtained and the given low resolution image is 
projected onto the eigen-images to compute the projection coefficients. 
The eigen-images are then interpolated using a suitable interpolation 
method and approximated to the nearest orthonormal bases. The high 
resolution image is reconstructed using these interpolated basis func
tions. This method is applicable to images of a particular class of object 
and results are demonstrated for both face and fingerprint images. This 
method offers a significant advantage when the input image is blurred 
and noisy. Thus, a blind restoration is possible using the eigen decom
posed observation. We also explore the case when a training database 
of high resolution images are available. 
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7.1 Introduction 

In chapter 4 we needed several low resolution observations of the scene 
with a moving point light source to decompose the given intensity im
age into structural and albedo components. Here we do away with the 
requirement of having to have several low resolution observations of 
the scene to achieve generalized interpolation. Thus, in effect, we have 
a single low resolution, noisy and blurred observation which needs to 
be super-resolved. In chapter 6 we discussed a method where a single 
observation was super-resolved by learning the high resolution wavelet 
coefficients representing the edges in the image from a given set of 
arbitrary but high resolution training image. However, the method 
could not handle an input image with arbitrary blurring as the method 
was unable to decide the scale at which the edge primitives should be 
searched from the training data. In this chapter, we relax this con
straint, i.e., the low resolution input image may have an arbitrary 
amount of blurring. Further, we do not impose any restriction on the 
form of blur point spread function (PSF). For example, we assumed the 
blur to be parameterizable using a single variable a (read a Gaussian 
shaped blur) in chapter 3. Thus, we look at the general case of having 
an arbitrary blurred and noisy input image. However, we do put a con
straint on the available training image database. We require that all 
training images must conform to the same class of objects, like a face 
or a fingerprint. 

In many biometric databases, a large number of images of similar 
contents, shape and size are available. For example, in investigative 
criminology one has available face and fingerprint databases. These 
are often taken at controlled environment and can be registered easily. 
The question we ask is that if one encounters a poor quality input 
image, can it be enhanced using the knowledge of the properties of 
the database images? Thus, the basic problem that we solve in this 
chapter is as follows. Given a low resolution input image belonging to a 
particular class (face, fingerprint, etc.) and a database of several good 
quality images of the same class, obtain a high resolution output. We 
perform a principal component analysis (PCA) on the image database 
and an appropriate interpolation is carried out on the eigen-images, 
using which the high resolution image is reconstructed. We show that 
this method is particularly useful when the input image is noisy and 
partly blurred so that the other existing learning-based methods do not 
provide a good solution. 
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In chapter 6, we have explained the concept of learning based super-
resolution reconstruction. The method discussed in this chapter can 
also be classified under that. Previously we learnt the high resolution 
edge primitives from the training data set for the low resolution edges 
in the observation. Thus, the learning was local and hence, we opted 
for the wavelet based representation of the image due to its nice local
ization property. However, the PCA-based method to be discussed in 
this chapter utilizes a global learning. Imagine what would happen if 
the wavelet bases are replaced by the Fourier bases. The edges can no 
longer be learnt locally. Certain aspects of the input image now has 
to be learnt globally. This imposes the constraint that all the training 
images should be globally similar, i.e., they should represent a sim
ilar class of objects or signals. This calls for the use of eigenvectors 
in discrete space domain instead of the Fourier bases for an efficient 
utilization of the signal statistics. 

7.2 PCA-Based Generalized Interpolation 

We have discussed the concept of generalized interpolation while using 
the photometric cue in chapter 4. This is done by decomposing the im
age into appropriate subspaces, carrying out interpolation in individual 
subspaces and subsequently transforming the interpolated values back 
to the image domain. The given function was decomposed into sub-
spaces consisting of the structure of the object represented by the sur
face gradient and the albedo as given by ai{x^y) = p{x^y)^a2{x^y) = 
q{x^y) and a^{x^y) = p{x^y) where p and q are the surface gradients 
and p is the albedo, respectively. In this chapter we use the same para
metric decomposition given by Eq. (4.1), i.e., 

/ ( x , y) = (f){ai(x, y),a2{x, y ) , . . . , aK{x, y)). (7.1) 

However, we decompose the given function into an eigen-space contain
ing the principal components a^, i = 1, • • •, Jf and use a linear function 
(/), i.e., 

K 

(j){ai{x,y),a2{x,y),...,aK{x,y)) = Y^Wiai. (7.2) 
i=l 

Note that here a^'s are orthogonal to each other and they are derived 
from the database of training images. Similarly, Wi represents the pro
jection of the given image on the i*^ basis vector (eigen-image). We 
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may now apply a suitable interpolation in the eigen-space and then 
combine them to get the super-resolved image. Thus the method is a 
special case of generalized interpolation. Since the eigen-images are not 
dependent on the input image /(a:, t/), and they are computed from the 
database of training images, all these interpolated basis vectors can be 
pre-computed and stored. Hence the method, if it does at all provide a 
good image reconstruction, will be a very fast one. 

7.2.1 Eigen-Image Decomposit ion 

An image can be reconstructed from eigen-images in the PC A represen
tation as described in [192]. Eigen-image decomposition for a class of 
similar objects is currently the most popular and actively pursued area 
of research in pattern recognition. The terms like eigen-face, eigen-
shape, eigen-palm, eigen-iris, eigen-ear, eigen-nose, e^c, are increas
ingly being used in the literature and product brochures to specify the 
domain of recognition. The concept derives its origin from the task of 
finding principal components of a signal from an ensemble of its obser
vations. We refrain from discussing this in the monograph for reasons 
of brevity. 

The basic procedure for computing the eigen-space is as follows: We 
have a dataset of N similar training images, represented by the matrix 
A = {Tx^Ti-, •' • ^^N]^ where J^i is the i^^ training image. Note that 
the training image of size M x M is converted to a vector !F of size M^ 
through a raster scan conversion. Thus the matrix A has the dimension 
M^ X N. In PCA, a set of top K eigenvectors E = [ e i , e2 , . . . ,ei<:], 
also called eigen-images, of dimension M^ x K are computed from the 
covariance matrix, 

N 

^ ^ E ( ^ ^ - ^:F){:Fi - xn:ff. (7.3) 

where mjr is the average image intensity defined by 

"»̂  = ^ E ^ - (7-4) 
1=1 

Note that the size of the training database is much smaller than 
the dimension of the image, i.e., N << M^. Hence S in Eq. (7.3) is 
rank deficient. Further, one does not store all eigen-images for the non
zero eigenvalues. We retain only top K (where K < N) eigen-images 
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based on the magnitude of the eigenvalues. Since K « M^, given the 
eigen-images one cannot reconstruct an image exactly. However, since 
all images are similar in nature (like face or ear images), only a small 
value of K suffices to reconstruct an image to good enough details. 

For a given low resolution image f/, a weight vector can be computed 
by projecting it onto eigen-images using 

^ = E^{ii-mj:), (7.5) 

An approximate reconstruction of f/ can be obtained from the top K 
eigen-images, 

f = £;w + m ^ . (7.6) 

Since K is typically much smaller than the size of the image vector, 
the image representation through the eigen-image expansion is not com
plete. Hence f is an approximation of f̂  and the quality of approxima
tion depends on its nearness to the class of images in the database. 

7.2.2 E igen - Image I n t e r p o l a t i o n 

Now we wish to form a set of high resolution eigen-images using which 
we can construct the high resolution output corresponding to the given 
low resolution input image. In order to do this all the K low resolution 
eigenvectors E and the mean vector mj: are upsampled using the bicu
bic interpolation. Any other suitable interpolation scheme can also be 
used. But we restrict to bicubic interpolation in this study. The interpo
lated mean vector is given by m^ and the upsampled set of eigenvectors 
are given by Ef, = [ei/^,es/j, • • • ,e^/ i ] , i.e., 

m^ = mjr( t r) 

and 
^/» = [ e i ( t r ) , e 2 ( t r ) , - - - , e i f ( t r ) ] , 

where the symbol t r represents upsampling by a factor of r. One 
may use an appropriate upsampling factor such as r = 2,3,4, etc. The 
new set of interpolated eigenvectors need not be orthonormal. They 
are then transformed into the nearest set of orthonormal vectors using 
the Gram-Schmidt orthogonalization procedure. Since all these vectors 
are of unit norm, the weights (eigenvalues associated with the corre
sponding eigen-images) must be multiplied by the upsampling factor r 
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(i.e., w/i = rw) to preserve the average brightness of the interpolated 
pictures. The high resolution image is now reconstructed using 

z = EhVfh + ni2 
K 

= r ^ ^ i e ^ ( t r ) + m^, (7.7) 
i=i 

where wi is the projection of the input image on the i^^ eigen-image. 
Compare this to Eq. (7.2) and observe that Eq. (7.7) is nothing but 
the generalized interpolation. There are two primary differences with 
the way the generalized interpolation is carried out compared to what 
we presented in chapter 4. 

1. One does not require several observations to decompose the original 
image into constituent eigen-images unlike in the previous case. The 
decomposition is based on the statistics learnt from the training 
images. 

2. The decomposition of the original image f; into eigen-images ê  is 
linear. 

The reader may recall that the motivation for using the generalized in
terpolation lay in the fact that the original function f̂  may not be band 
limited but the constituent function a^'s may very well be. However, 
the above argument is no longer valid for PCA-based decomposition. If 
all e^'s in Eq. (7.7) are bandlimited, so is f/ due to hnearity. Hence the 
PCA-based upampling cannot eliminate aliasing from the given image 
f;. Then what is the motivation for PCA-based upsampling? Does it 
provide any benefit in terms of having a lower interpolation error while 
upsampling? Let us look at this issue in more details. 

According to Lagrange's theorem, if a function f[x) possesses the 
( n + 1)*^ derivative f^'^'^^\x) at all points in an interval containing the 
point XQ^ the remainder Rn{^) is representable in the form 

for every point x in this interval where ^ is a number lying between XQ 
and X. Using this, it can be easily shown that for a n*^ order polynomial 
approximation of the original (unknown) function / at a point 5x away 
from the nearest grid point, the approximation error is bounded by 
[193] 
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For a thin plate fitting spline over a square grid of size h^ the maximum 
error is bounded by [194] 

\f-f\<ch^J\]^\\\Cfl (7.9) 

where c is a positive number given by [(327r)"^(31og2)]2 and C stands 
for the corresponding regularization term. 

Let us now consider the following abstract parametric decomposi
tion of the function f{x), 

f{x) = (I){ai{x),a2{x),... ,aK{x)), (7.10) 

where ai{x)^ i == 1,2, . . . , K are different functions of the interpolating 
variable x and when they are combined by an appropriate if-variate 
function (j)^ one recovers the original function. We can now interpolate 
the individual functions ai{x) and combine them using Eq. (7.10) to 
obtain a rescaled f{x). 

The interpolation error at a point x can be written as 

1/^-/1 = \(t){ai{x) + €i,... ,aK{x) ^ EK) 
-(j){ai{x),a2{x),.. .,aKix))\ (7.11) 

where fg represents the result of generalized interpolation. Here ê , 
i = 1 ,2, . . . , JC are the interpolation error at the same point x for the 
associated interpolant ai{x). In order to get a feel for the behavior of 
the error function for the PCA-based upsampling method, we consider 
(/) to be a linear function, i.e., 

K 

(j){ai{x),a2{x),... ,a/^(rr)) = "^aiUiix), a^ > 0 Vi. (7.12) 
i=l 

From Eq. (7.12), the interpolation error using a n*^ order polynomial 
at a point S away from a grid point x is given by 

K 

\fg{x)-f{x)\ <Y^ai\eil 

i.e., 
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|x|(n+l) K f) f) 

l / p ( ^ ) - / ( ^ ) l < | ; ; L _ _ g « , ^ a x | ( - + - r + i a , ( a : ) | . (7.13) 

On the other hand, if one performs an n^^ order polynomial inter
polation at the same location on the scattered data f{xi) itself, the 
corresponding error bound is 

|^|(n+l) f) f) 

l/p(-) - /(-)l < ^ T I ) ! - - K ^ ^ + a^)"^V(:^)|. (7.14) 

We need to determine whether we gain anything by individually in
terpolating the constituent functions of (f) instead of interpolating the 
function f{x) directly? In order to prove that there is, indeed, some 
gain, one should compare Eq. (7.13) and (7.14) and must prove that 

V a ^ m a x ——-4V^ < m^\-—^^\ 7.15) 
I 

Similarly, for a thin plate spline interpolation, it can be shown that if 
one were to achieve a lower approximation error using the parametri-
cally decomposed generalized method, we must have 

J2ai\\Cai{x)\\<\\Cf{x)\\. (7.16) 
2 = 1 

Unfortunately, all the above relationships are not valid when (̂  is a lin
ear function of polynomials. Thus, a direct interpolation of the function 
/ [x) seems to be an equally good option instead of the indirect one. 

7.3 Usefulness of PCA 

In the last section we noticed that the PCA-based upsampling method 
neither provides an alias-free reconstruction nor achieves a lower in
terpolation error. In a typical image super-resolution problem, one is 
required to restore the input image from its noisy, blurred and aliased 
observations. Quite naturally, the PCA-based method cannot handle 
aliasing in the observation. We refrain from discussing this issue fur
ther in this chapter. But does it help in removing sensor noise and the 
image blur? 

Let us first assume that the observation / is free from blur, but 
is quite noisy. Since the eigen-image representation (see Eq. (7.6)) is 
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an incomplete representation and since the noise present in the input 
image is expected to be totally uncorrelated to all the available basis 
vectors, the reconstruction process reduces the noise drastically. Due to 
the incompleteness of the basis vectors, the reconstructed image may be 
partly distorted. But it is the incompleteness of the eigen decomposition 
that removes the noise from the data. Since the input image conforms 
to the given class of objects, only a few eigen-images are required to 
reconstruct the image without much error. It is this property of the 
PCA that allows us to filter out the noise. 

Let us now consider the case when the input image is blurred, i.e., 

f6 = h * f 

where f is the true image and h is the blur PSF. For simplicity, let 
us assume that the blur kernel is of finite impulse response (FIR) in 
nature, when 

f6 = E« i / ( ^ + )̂ = E«'f^' (7-17) 
i i 

with ]C^i — 1 (mean preserving blurring) and ai > 0 V i. Without 
loss of generality, we may assume the true image f to be zero mean. 
Using Eq. (7.5) we can compute the projections on the eigen-images 

W6 - E'^n - X^ ai{E^fi) ^ aow + ^ a^w^, (7.18) 
i i=l 

where w is, as before, the projection coefficient vector for the true (non-
blurred) image, and w^ corresponds to the projection coeflScients for the 
shifted image f̂ . Since the eigen-images represented by E correspond 
to the principal components, and since an image is typically correlated 
over its neighbors, it is expected that w^ c:̂  w Vi. The reconstructed 
image fi, is given by 

h = Ewb = aoEw + Yl ^i^^i' (7-19) 

The error in reconstruction due to the blurred observation with respect 
to the previously obtained (see Eq. (7.6)) image f is given by 

f - fft = (1 - ao)Ew - J2 otiE^Ni. 

Using the fact that ^^ a^ = 1, we get 
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|f - ffti = I ^ a i - E w -^aiEwi] = | ^ a i £ ; ( w - Wi)|. (7.20) 
i = l i=l i=l 

Since E form an orthonormal basis set, 

\f-h\<^ai\{w-^i)l (7.21) 

As mentioned earlier |w —w l̂ is very small and similarly a^ < 1. Hence 
|f—fftl is quite negligible, i.e., the reconstructed image is quite good even 
if the observation was blurred. Or in other words, if the input image 
is blurred, it will still have significant correlation with the correspond
ing eigen-images of the ideal image. Since the eigen-images have been 
computed using the good quality training images, the reconstruction 
process is expected to remove the blur present in the data. Needless to 
say, if the input image is badly blurred, the associated eigen expansion 
may be very different from that of the ideal image, when the recon
struction will be quite poor. Direct interpolation of the input image 
does not solve any of the above two problems of blurring and noise 
perturbation, justifying the claim that the PCA-based restoration does 
help. 

7.4 Description of Algorithm 

The PCA-based restoration algorithm is summarized below in terms of 
the steps involved. 

STEP 1: Perform the PC A decomposition on the low resolution image 
database to get k eigen-images represented by the matrix E and 
also obtain the mean image mj^. 

STEP 2: Project the given low resolution image fi onto the eigen- im
ages to get the eigen-image coefficients w. 

STEP 3: Interpolate the eigen-images E and the mean image mjr to 
get the corresponding high resolution eigen-image matrix E^ and 
the high resolution mean image m^-

STEP 4: Approximate the high resolution eigen-images to the nearest 
orthonormal bases. These are precomputed and stored while ob
taining the principal components. 

STEP 5: Obtain the super-resolved image using Eq. (7.7). 
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It may be noted that only steps 2 and 5 need to be computed for a 
given input image for restoration. Hence the method is very fast. Since 
no high pass filter is used for deblurring, it does not boost the noise. 
However, the method may fail if the blurring is very severe or if the 
input images are not properly registered with those of the database 
images. 

7.5 Use of High Resolution Database 

We have assumed thus far that the training image database is at the 
same spatial resolution as the input image. The use of upsampling of 
the eigen-images does not recover the high frequency details. However, 
we observed that the PCA-based method is able to undo the image 
blurring and to remove noise. Blurring in a signal is closely related to 
its scale at which the signal is viewed. We expect a good correlation 
between the eigen-images at different scale. If the correlation structure 
remains quite unchanged over the scale, we may be able to move the 
upsampling process at the output end in step-3 in section 7.4 to the 
input side before step-1 itself. Let us see what this achieves for us. 

We do now have a number of high resolution training images of a 
particular object class. The principal components of these training data 
are obtained. A low resolution (say, a decimation factor of r ) , blurred 
and noisy image is first upsampled by a factor of r using any interpola
tion technique. The upsampled input image is now projected onto the 
eigen-images, and the high resolution restored image is obtained using 
equation Eq. (7.6). Since the training images are all of high resolution, 
the input image is, indeed, super-resolved in the sense that it is now 
able to recover the high frequency details. 

The performance of this super-resolution scheme depends on how 
good (or correlated) the training images are with respect to the input 
image. Hence the method is applicable to an image of a specific class 
of object such as fingerprint or face images. 

7.6 Experimental Results 

We now demonstrate the performance of the PCA-based upsampling 
method. We show results for both the cases, i.e., the training images 
are at the same resolution as the test image, and when the test image 
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is at a lower resolution. Experiments were conducted on both face and 
fingerprint images. For face images the database consisted of 105 good 
quality images (in the sense that there is no blur in the training data) 
of size 82 x 96 pixels. All the images were of frontal face and no pre
processing was done on them. A high resolution image is blurred using 
a 3 X 3 Gaussian kernel with standard deviation 0.5, and added with 
zero mean Gaussian noise of difi'erent standard deviations {a) to form 
the input image. For the second case, the input image is decimated by 
a factor of r to serve as the input image to be super-resolved. The same 
database is used to serve as the high resolution training data. 

Figure 7.1 shows the first 10 eigen-images computed from the 
database of 105 face images. The eigen-images were then upsampled 
by a factor of r (say r = 2,3,4, etc.) and stored for subsequent us
age. In Figure 7.2 the noisy input image with a = 0.1 (the gray values 

Fig. 7.1. First ten eigen-images obtained from the training data set. 

for the images considered in this chapter have been normalized in the 
range [0,1]) and the corresponding bicubic interpolated image and the 
super-resolved images for zoom factors of 2 and 4 are shown. It can be 
observed that the super-resolved image is almost noise free and more 
clear than the bicubic interpolated image which is highly noisy. This is 
quite expected as the bicubic interpolated image takes the given noisy 
image itself as the input and hence it can remove neither blur nor the 
noise. For the PCA-based approach, the lips, the eye-brows and the 
hairlines appear quite clearly. 

We now experiment on what happens if the noise level is increased. 
In Figure 7.3, even though the given observation is much more noisy 
{<7 = 0.5), the super-resolved image is of far better quality compared to 
the bicubic interpolated image which is very noisy for obvious reasons. 
The quality of reconstruction is now inferior to what we obtained in 
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(c) (d) 

Fig. 7.2. (a) A low resolution noisy observation {a = 0.1), (b) bicubic interpolated 
image with r = 2, PCA-based restoration with (c) r = 2 and (d) r = 4. 

Figure 7.2(c). Some artifacts are now visible on the left cheek. The 
performance is quantified in terms of the PSNR tabulated in table 7.1 
where the PSNR for the bicubic interpolated image and super-resolved 
image for a zoom factor r — 4 and for different values of noise level are 
shown. As mentioned in section 7.3 it is observed that when the noise 
level a is very large, the reconstructed image deviates from the original 
face image. 

We now investigate the performance of the PCA-based method when 
the input image is severely blurred. In Figure 7.4(a) an input image 
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(c) (d) 

Fig. 7.3. (a) A very noisy observation (cr = 0.5). (b) Result of bicubic interpolation 
with r = 2. PCA-based reconstruction for (c) r = 2, and (d) r = A.. 

which is blurred with a 7 x 7 Gaussian mask with a standard deviation 
of 2 is shown. The details on the face is quite lost in the input. As 
expected, the output due to bicubic interpolation is heavily blurred, 
but the super-resolved image is almost free from blur. The details on 
the face are now quite restored in Figure 7.4(c). However, we observe 
a bit of artifacts on the face. This demonstrates that as long as there 
is a good correlation of the input image with the eigen-images, a good 
reconstruction is, indeed, possible. Thus the key aspect about the PGA-
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based method is its capability to recover a good quality image when 
the input image is blurred and noisy. 

(b) ic) 

Fig. 7.4. (a) A highly blurred low resolution observation, (b) bicubic interpolated 
image, with r = 2, and (c) the reconstructed image with r = 2. 

Now we experiment on how many eigen-images are required for a 
good reconstruction. Figure 7.5 shows the reconstructed image obtained 
using 10, 20 and 50 eigen-images. Here the figure given in 7.2(a) served 
as the input image. It is observed that using the top 50 eigen-images a 
good quality output can be reconstructed. Compare this to the result 
given in Figure 7.2(c) which was obtained using 100 eigen-images. They 
are nearly indistinguishable in quality. 

In all the above experiments the low resolution input image was a 
part of the database which consisted of 75 male faces and 35 female 
faces. The database had the picture of the same person but at a difi'erent 
orientation. Figure 7.6 shows the bicubic interpolated image and the 
super-resolved image corresponding to a blurred and noisy input face 
image which is not at all present in the database. In this case also we 
are able to obtain a better restoration. 

In the next experiment we demonstrate that if the input image does 
not belong to the class of objects in the database, one cannot do any 
meaningful reconstruction. Figure 7.7 shows the reconstructed image 
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(a) (6) ic) 

Pig. 7.5. PCA-based reconstructions using different numbers of eigen-images. (a) 
K = 10, (b)Jiir = 20, and {c)K = 50. 

(a) (b) {c) 

Fig. 7.6. Restoration of an input image not present in the database, (a) Noisy 
observation, (b) bicubic interpolated image, and (c) result of PCA-based restoration 
for r = 2. 

for some arbitrary input image using the face image database and 100 
eigen-images. Here the output is not at all related to the input, which 
indicates clearly that the PCA-based method is applicable only for a 
specific class of images. 

We now show results of experiments on a different database. Fig
ure 7.8 shows the poor quality input, bicubic interpolated result and 
the super-resolved images for zoom factors of r = 2 and 4 for a fin
gerprint image. The results are shown for a noise level of a — 0.1. In 
this experiment the low resolution database consisted of 150 fingerprint 
images of size 32 x 32 pixels, and the top 100 eigen-images were used 
for reconstruction. It can be observed that the super-resolved image is 
more clear and noise free compared to the bicubic interpolated image. 
We also compare the performance in terms of the PSNR measure and 
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(a) (b) 

Fig. 7.7. Illustration of PCA-based restoration for an arbitrary input image very 
different from the given class of face images, (a) The input image, and (b) restored 
image! 

the corresponding values are given in Table 7.1 for different values of 
noise variance. We observe a substantial improvement in PSNR for the 
PCA-based approach. 

Image 
Face 

Fingerprint 

Method 
Bicubic 

Proposed 
Bicubic 

Proposed 

cr = 0.1 
22.93 
24.23 
20.88 
21.36 

a = 0.2 
20.27 
22.88 
17.76 
20.01 

cr = 0.5 
16.78 
19.79 
13.72 
16.50 

Table 7.1. Comparison of PSNRs for a zoom factor of r == 4 for different levels of 
noise. 

We now investigate the performance of the method when the up-
sampler at the output end is replaced by an upsampler at the input 
end (section 7.5). Thus the input image is at a lower resolution, but the 
training database is at a higher resolution. For convenience, we use the 
same training database, but the input image is decimated by a suitable 
factor r to serve as the low resolution observation. This observed im
age is then appropriately interpolated before applying the PCA-based 
restoration. 

In Figure 7.9(a), we show a low resolution observation. We add a 
Gaussian white noise with a = 0.1 to simulate the presence of noise 
in the data. Figure 7.9(b) shows the result of bicubic interpolation. 
Quite naturally it is poor due to the presence of noise. In Figure 7.9(c) 
we show the result of PCA-based high resolution restoration for the 
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(c) (d) 

Fig. 7.8. Illustration of results for a different object class, (a) A poor quality fin
gerprint image. Results of (b) bicubic interpolation, and PCA-based interpolation 
for (c) r = 2, and (d) r — A. 

upsampling factor of r = 2. The effect of noise is almost removed and 
the quahty of reconstruction is very good. 

In Figure 7.10(a), the same input as shown in Figure 7.9(a) is further 
corrupted with additive noise. We use a = 0.5 and the corresponding 
input image is of very poor quality. Hence we do not accept to view the 
image content in Figure 7.10(b) when the image is bicubically interpo
lated. The result of high resolution PCA-based restoration for r = 2 
is shown in Figure 7.10(c). Although the corresponding reconstruction 
is inferior compared to what is given in Figure 7.9(c), the face is still 
identifiable. There appears to be significant distortion near the lips. 

Now we show some results of experimentation for an upsampling 
factor of r = 4. The input image having a good amount of noise cor-
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(a) (b) (c) 

Fig. 7.9. (a) A low resolution noisy observation {a = 0.1), (b) bicubic interpolated 
image, and (c) PCA-based restoration with r = 2 using a high resolution training 
data set. 

(a) (b) ic) 

Fig. 7.10. (a) A low resolution, extremely noisy observation {a = 0.5), (b) bicubic 
interpolated image, and (c) the high resolution PCA-based restoration with r = 2. 

ruption (a = 0.1) is shown in Figure 7.11(a). The corresponding bicubic 
interpolated image with r = 4 is shown in Figure 7.11(b). The result 
of PCA-based reconstruction is shown in Figure 7.11(c). Compare this 
with the corresponding result for r = 2 given in Figure 7.9(c). We 
notice that reconstruction is still very good even for an upsampling 
factor of r = 4. The face is clearly recognizable and the effects of noise 
are no longer visible. Likewise in the case of upsampling by a factor 
of r = 2, we now experiment with the case when the input is very 
noisy. The noise level is increased to a = 0.5. There is hardly anything 
visible either in the input image or in the bicubic interpolated image 
shown in Figures 7.12(a, b). The result of PCA-based reconstruction 
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is shown in Figure 7.12(c). We now notice a considerable distortion in 
the reconstructed image compared to what we obtained for r = 2 in 
Figure 7.10(c). The nose and the hps are poorly distorted. The strands 
of hair over the right eye is now missing! Although the reconstructed 
image does look like a face image, it is hardly of any consolation as the 
training data consists of face images only. Probably a face recognition 
engine would fail to recognize the reconstructed image. Hence we may 
conclude that if the noise level in the input image is very high and 
the magnification factor r is also large, the PCA-based reconstruction 
method will fail. 

(a) (b) (c) 

Fig. 7.11. (a) A low resolution noisy observation (<j = 0.1), (b) bicubic interpolated 
image, and (c) high resolution PCA-based restoration with r = 4. 

In the next experiment, we do not corrupt the image with ran
dom noise. But the low resolution image was convolved with a 7 x 7 
pixels Gaussian mask with cr == 1 to simulate a blurred observation 
(see 7.13(a)). The image, when upsampled by a factor of r = 4 using 
bicubic interpolation, shows a large amount of blur in Figure 7.13(b). 
In Figure 7.13(c) we show the result of corresponding PCA-based re
construction. There is definitely some distortion in the reconstructed 
image near the lips and near the left eye. However, the face is still 
quite recognizable. All these experiments substantiate the claim that a 
high resolution database can, indeed, be used for super-resolving a low 
resolution blurred and noisy observation. 
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(6) (c) 

Fig. 7.12. (a) A low resolution very noisy observation (a = 0.5), (b) bicubic inter
polated image, and (c) high resolution PCA-based restoration with r = 4. 

(a) (b) (c) 

Fig. 7.13. (a) A low resolution image blurred with a Gaussian mask with a standard 
deviation of 1.0 serves as an observation, (b) Bicubic interpolated image, and (c) 
result of a high resolution PCA-based restoration with r = 4. 

In the previous set of experiments shown in Figures 7.9-7.12, a vari
ant of the input image was a part of the training database. We now show 
the results when the input image was not a part of the high resolution 
training database. Figures 7.14(a, b) show the noise corrupted low res
olution observation and its bicubic interpolation, respectively. Figure 
7.14(c) shows the results of high resolution PCA-based reconstruction 
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(a) (6) (c) 

Fig. 7.14. (a) A low resolution image, without any corresponding high resolution 
image in the database is corrupted by noise with a = 0.1. (b) Bicubic interpolated 
image, and (c) high resolution PCA-based restoration with r = 4. 

for the upsampling factor of r = 4. The quality of reconstruction does 
appear to be quite good. 

In the last experiment on face images we combine the use of a high 
resolution database for PCA with the generalized interpolation through 
the eigen-images. Here the input image is at a lower resolution than 
the training images. The output image is also at a higher resolution 
than the training images. This is obtained by using the generalized 
interpolation of the corresponding high resolution eigen-faces. In effect, 
we have upsamplers r — T\ and r = r2 at both the input and the output 
ends, respectively. 

In Figure 7.15(a) a low resolution observation of size 41 x 48 pixels is 
shown. The database training images were of dimension 82 x 96 pixels. 
Figure 7.15(b) shows the bicubic interpolated output for a zoom factor 
of rir2 = 8. The low resolution input is first bicubic interpolated by a 
factor of r i = 2 and then super-resolved by a factor of r2 = 4 using the 
proposed approach and the corresponding result is shown in 7.15(c). 
As expected, the super-resolved image is less blurred than the bicubic 
result. 

Before we end this section on experimental results, we show some 
more results on the usage of a high resolution training data for fin
gerprint images. The input images Figures 7.16(a) and 7.17(a) show 
two low resolution observations at two different levels in the resolution 
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(a) ib) (c) 

Fig. 7.15. (a) A low resolution observation of different image size 41 x 48 pixels, 
(b) bicubic interpolated image with r = 8 and, (c) PCA-based reconstruction. 

pyramid. The images have been corrupted with additive white Gaus
sian noise with a = 0.1. In Figures 7.16(b and c), we compare the 
performance of the bicubic interpolation with that of the PCA-based 
method for an upsamphng factor of r = 2. Figures 7.17(b and c) show 
the same results for r — 4. We can clearly observe an improvement in 
the picture quality when the PCA-based reconstruction is used. 

Fig. 7.16. (a) A low resolution noisy fingerprint observation {a = 0.1), (b) bicubic 
interpolated image, and (c) high resolution PCA-based restoration with r = 2. 

7.7 Conclusions 

We have described a method for super-resolution restoration of images 
of a particular class of object using a PCA-based generalized interpo
lation technique. The low resolution eigen-images obtained from PCA 
decomposition are interpolated and transformed into an orthonormal 
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(a) (b) (c) 

Fig. 7.17. (a) A low resolution very noisy fingerprint observation (cr = 0.1), (b) 
bicubic interpolated image, and (c) high resolution PCA-based restoration with 
r = 4. 

basis to reconstruct the super-resolved image. The results obtained for 
both face and fingerprint images show far better perceptual as well as 
quantifiable improvements over conventional interpolation techniques. 
The proposed method is useful when multiple observations of the in
put are not available and one must make the best use of a poor quality 
single observation to enhance its resolution. 

We have also shown the usefulness of having a high resolution train
ing dataset instead of a low resolution dataset, when there is no need to 
perform a generalized interpolation of the eigen-images. However, the 
reconstruction process breaks down if the low resolution observations 
are quite noisy and one requires an upsampling factor of 2 or 3. The 
use of the observation at the same resolution as the training data and 
then the use of a subsequent generalized interpolation appears to be a 
more robust technique. 

The proposed method cannot be classified under a general purpose 
super-resolution technique as the scope of applicability is very much 
restricted to images of a specific class of objects. For example, we cannot 
use it for an outdoor scene. However, we envisage that the method may 
be found quite suitable for biometric authentification or recognition 
purposes. 



8 

Use of Zoom Cue 

In chapter 6 on wavelet-based learning for image super-resolution it 
was mentioned that the concept falls apart whenever one tries to ad
just the zoom setting of the camera. Any change in zoom changes the 
effective resolution of the scene being imaged and hence the existing 
set of training images become redundant. However, we do acquire new 
and additional information about the scene while zooming. For a con
tinuously zooming camera, we do get an enhanced resolution. However, 
the field of view being gradually smaller and smaller, one can see only a 
part of the entire scene. This is a typical dilemma faced by people work
ing in the area of remote sensing with satellite imagery. By going into 
higher resolutions, say Im resolution, we loose much of the area cov
erage that one could have had with a low resolution camera, say 5.8m 
resolution. Spatial details and the area coverage are both important. 

In order to have a high spatial resolution and wider area coverage, 
a possible solution is to use image mosaicing [195]. However, one re
quires to have a complete set of high resolution observations of the 
entire landmass to construct the mosaic. Quite often, we may not have 
access to high resolution observations for all parts of the scene. We may 
have access with varying resolutions at different points in the scene. Is 
there any way we can reconstruct a high resolution description of the 
entire scene from observations at varying resolutions? This has been 
the primary motivation behind developing the contents of this chapter. 

8.1 Introduction 

When one captures an image with different zoom settings the amount 
of aliasing differs with zooming. This is because, with different zoom 
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settings, the least zoomed entire area of the scene is represented by 
a very hmited number of pixels, i.e., it is sampled with a very low 
sampling rate and the most zoomed scene with a higher sampling fre
quency. Therefore, the larger the scene, the lower will be the resolution 
with more aliasing effect. By varying the zoom level, one observes the 
scene at different levels of aliasing. Thus one can use zoom as a cue 
for generating high resolution images at the lesser zoomed area of a 
scene. As mentioned earlier, this would help us in representing a larger 
landmass with a high spatial details for remote sensing applications. 
An interesting application of super-resolution using zoom as a cue is 
also in remote sensing for fusion of remotely sensed images where it 
is often required to construct both high spectral and high spatial res
olution multi-spectral (MS) images using the high spatial resolution 
panchromatic (PAN) image of the same geographical area. Due to the 
technological limitations the multi-spectral images are generally ac
quired with larger instantaneous field of view than the panchromatic 
image leading to a low spatial resolution for these images. However, 
the fusion of MS and PAN images can lead to a high spatial resolu
tion for MS images and thus results in a better analysis of remotely 
sensed images in terms of understanding of the observed terrain. Many 
researchers have tackled the fusion problem [196, 197, 198, 199, 200], 
but these are mostly based on point statistics and require accurate reg
istration among PAN and MS images. The contents developed in this 
chapter could be of help in multiresolution fusion. Another interesting 
application is in developing a high quality immersive viewing system 
where the zoom amount can be changed while making the virtual-walk 
through without compromising in the spatial resolution. 

The objective of super-resolution imaging is to undo the distortions 
introduced in an image due to undersampling, loss of high frequency 
information due to sensor blur or out-of-focus optical blurring. In this 
chapter, we discuss a technique for super-resolution imaging of a scene 
from observations at different zoom levels, where there is loss of in
formation due to undersampling during the zooming process. Given a 
sequence of images with different zoom factors of a static scene, our 
problem is to obtain a picture of the entire scene at a resolution corre
sponding to the most zoomed image in the scene. We not only obtain 
the super-resolved image for known integer zoom factors, but also for 
unknown arbitrary zoom factors. After a lapse of two chapters in be
tween, we again model the super-resolution image as a Markov random 
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field (MRF) and a maximum a posteriori (MAP) estimation method 
is used to derive a cost function which is then solved to recover the 
high resolution field. The entire observation is assumed to conform to 
the same MRF, but is viewed at the different resolution pyramid. Since 
there is no relative motion between the scene and the camera, we do 
away with the correspondence problem. 

As discussed in the chapter on literature survey, researchers tradi
tionally use the motion cue to super-resolve the image. However, the 
methods based on the motion cue cannot handle observations at varying 
levels of spatial resolution. It assumes that all the frames are captured 
at the same spatial resolution. Previous research work with zoom as a 
cue to solve computer vision problems include determination of depth 
[12, 13, 14], minimization of view degeneracies [15], and zoom tracking 
[16]. Lavest and his co-authors [12, 13] develop a depth reconstruction 
method for a static object and camera using the thick lens model. They 
conclude that simpler pinhole model can be used (instead of a more ac
curate thick lens model) only if the effective change of focal point during 
zooming is considered, enabling 3D information to be inferred by trian-
gulation. Ma and Olsen [14] develop two depth from zooming methods 
for a pinhole camera model applicable to static objects using both op
tical flow and feature matching. They conclude that feature matching 
in a zoom sequence is more accurate and reliable, because it is less sen
sitive to noise than the optical flow analysis by presenting results for 
synthetic models. In [15] Wilkes et al use zoom to reduce the probabil
ity of view degeneracies. Degenerate views occupy a significant fraction 
of the viewing sphere surrounding an object. Furthermore, these view 
degeneracies cannot be detected from a single viewpoint. Wilkies et al 
choose a focal length that reduces the probability of view degeneracies, 
improving the performance of systems designed to recognize objects 
from a single, arbitrary view point. Zoom tracking refers to the prob
lem of continuous adjustment of camera focal length in order to keep 
a constant sized image of an object moving along the camera's optical 
axis. Two methods for performing zoom tracking presented in [16] are 
based on the optical flow and the use of depth information from an 
autofocus camera's range sensor. The authors show that zoom tracking 
can be used to reconstruct the depth map of the tracked object. 

We demonstrate in this chapter that even the super-resolution prob
lem can be solved using zoom as an effective cue by using a simple 
MAP-MRF formulation. The basic problem that we address can then 
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be defined as follows: One continuously zooms into a scene while captur
ing its images. The most zoomed-in observation has the highest spatial 
resolution. We are interested in generating an image of the entire scene 
(as observed by the most wide angle or the least zoomed view) at the 
same resolution as the most zoomed-in observation. 

We use observations at arbitrary levels of resolution (scale) and 
these scale factors are estimated while super-resolving the entire scene. 
One may observe that the approach generates a super-resolved image 
of the entire scene although only a part of the observed scene has 
multiple observations. In efi'ect what we do is as follows. If the wide 
angle view corresponds to a field of view of a^, and the most zoomed 
view corresponds to a field of view of /3^ (where a > /3), we generate a 
picture of the oP field of view at a spatial resolution comparable to /3^ 
field of view by learning certain image statistics from the most zoomed 
view. The details of the method are presented in this chapter. 

8.2 Low Resolution Image Formation Model 

In chapter 3 we have discussed the low resolution image formation 
model. We continue to use the same model in this chapter. However, 
because of the zooming process, it needs some elaboration. The zooming 
based super-resolution problem is cast again in a restoration framework. 
There are K observed images {Yi\f^^ each captured with different zoom 
settings and of size M\ x M^ pixels each. Figure 8.1 illustrates the block 
schematic of how the low resolution observations of a scene at different 
zoom settings are related to the high resolution image. Here we consider 
that the most zoomed observed image of the scene YK (iC = 3 in the 
figure) has the highest resolution. 

A zoom lens camera system has complex optical properties and thus 
it is difficult to model it. As Lavest et al. [13] point out, the pinhole 
model is inadequate for a zoom lens, and a thick-lens model has to be 
used; however, the pinhole model can be used if the object is virtually 
shifted along the optical axis by the distance equal to the distance 
between the primary and secondary principal planes of the zoom lens. 
Since we capture the images with a large distance between the object 
and the camera and if the depth variation in the scene is not very 
significant compared to its distance from the lens, it is reasonable to 
assume that the paraxial shift about the optical axis as the zoom varies 
is negligible. Thus, we can make a reasonable assumption of a pinhole 
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Fig. 8.1. Illustration of observations at different zoom levels: Yi corresponds to 
the least zoomed and Ys to the most zoomed images. Here Z is the high resolution 
image of the same scene. The image Ys does not need upsampling while filling up 
the central region in Z. But Yi and Y2 need appropriate amount of upsampling. 

model and neglect the depth related perspective distortion due to the 
thicklens behavior. We are also assuming that there is no rotation about 
the optical axis between the observed images taken at different zooms. 
However we do allow lateral shift of the optical center as explained in 
section 8.3.1. 

Since different zoom settings give rise to different resolutions, the 
least zoomed scene corresponding to entire scene needs to be upsam-
pled to the size of (rir2 • • - r x - i ) x (Mi x M2) = (iVi x N2) pixels, 
where r i , r2 , • *' 7^K-i are the zoom factors between observed images 
of the scene 1x12,12^3, • • • ^Y(^P;;_I)YK') respectively. Given Y^-, the re
maining {K — 1) observed images are then modeled as decimated and 
noisy versions of this single high resolution image of the appropriate 
region in the scene. With this the most zoomed observed image will 
have no decimation. If y^^ is the M1M2 x 1 lexicographically ordered 
vector containing pixels from differently zoomed images Y^, the ob
served images can be modeled as (refer to Figure 8.2 for illustration) 

Ym — DmRm^am + ^ m ! , • • • , K (8.1) 
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Fig. 8.2. Low resolution image formation model is illustrated for three different 
zoom levels. View cropping block just crops relevant part of the high resolution 
image Z as the field of view shrinks with zooming along with a possible lateral shift. 

where Zami^^v) = ^(^ - Oim^^y - Oimy) with am = (oimx^Oimy) repre
senting the lateral shift of the optical center due to zooming by the lens 
system for the m^^ observation. The matrix D is the decimation matrix 
which takes care of aliasing present while zooming. The subscript m 
in D denotes that the amount of decimation depends on the amount 
of zoom for the rri^^ observation. For an integer zoom factor of r, dec
imation matrix D has the form as given in Eq. (3.12) and is repeated 
here for recapitulation (note that a re-ordering of the elements of z is 
needed to get D in this form). 

1 1 . . . 1 0 
1 1 . . . 1 

0 1 1 . . . 1 

However, we do not restrict ourselves to integer zoom factors alone as 
any practical implementation using an optical zoom mechanism would 
involve an arbitrary value of r. Here Rm is a cropping operator on 
z needed to handle the shrinkage of view angle during the zooming 
process. The cropping operator is similar to a characteristic function 
that crops out a [rir2 • • • rm-i-^i j x [̂ "1̂ 2 • • • rm-iN2\ pixel area from 
the high resolution image z at an appropriate position for the m*^ 
observation. In case there is no lateral shift while zooming along the 
optical axis, Rrn would involve cropping from the center. In Eq. (8.1), 
K is the number of observations, n ^ is the M1M2 x 1 noise vector. We 
assume the sensor noise to be zero mean Gaussian i.i.d, and hence the 
multivariate noise probabihty density is given by 
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P{^m) = , M,M,exp I -—^nJ^Um } , (8.2) 

where cTrĵ  denotes the variance of noise process. Our problem now 
reduces to estimating z given ym's, which is clearly an ill-posed, inverse 
problem requiring suitable regularization. 

8.3 MAP Estimation 

Since the restoration of the high resolution image from its differently 
zoomed observations is an ill-posed problem, we model the high res
olution data z as an MRF. Earlier in chapters 3-5 we have used pre
cisely the same model for regularization purposes. We define the corre
sponding energy function V(z) exactly the way it has been defined in 
Eq. (3.18) 

In order to use the maximum a posteriori (MAP) estimation tech
nique to obtain the high resolution image z given the ensemble of images 
at different resolutions we need to obtain 

z = arg m a x P ( z I y i ,y2 , • • • , y i ^ ) . (8.3) 

From Bayes' rule this can be written as 

z = axg max ^(yi^^^^ ' ' " ^^^ I - ) f ( - ) , (3.4) 
^ ( y i , y 2 , ••• ,yK) 

where P(z) represents the prior probability for the super-resolved im
age. Since the denominator is not a function of z, it can be considered 
as a constant while maximizing, and hence Eq. (8.4) can be written as 

z==arg m a x P ( y i , y 2 , • • • ,yK | z)P(z) . (8.5) 

Taking the log of the posterior probability, 

z = arg max[logP(yi ,y2, • • • ,y/c | z) + logP(z)]. (8.6) 

Now since n ^ are independent, we have 

^(yi,y2, ••• ,y/riz) = P(yi |z)P(y2|z) ••• ^(y/^ | z), 

and hence 
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z = arg max 
z 

K 

5^1ogP(y^ |z)+logP(z) 
.m=l 

(8.7) 

Using equations (8.1) and (8.2) in P{ym \ z) we obtain 

P{ym I z) = 
(27r(7„2)-V 

-exp < -
||ym - DmRm'^amW 

2a„2 
. (8.8) 

Now we use the MRF prior for the high resolution image z. Thus us
ing Eq. (3.17) and substituting in Eq. (8.7) the final cost function is 
obtained as 

z = arg mm 
z 

r K 

E 
lm=l 

lly. ^mJ^m^ mJ-hm^am I 
2a„2 

+ U{7.) (8.9) 

Here C/(z) = YlceC^^'ci'^) ^̂  ^he energy function associated with the 
random field z and V/(z) the potential function associated with a given 
clique. The above cost function is convex since the binary line fields are 
not included and is minimized using the gradient descent technique. 
The initial estimate z(^) is obtained as follows. Pixels in zero-order 
hold (or bilinear interpolation) of the least zoomed observed image cor
responding to the entire scene is replaced successively at appropriate 
places with zero-order hold (or bilinear interpolation) of the other ob
served images with increasing zoom factors. Finally the most zoomed 
observed image with highest resolution is copied at the center after 
accounting for the lateral shift {ax^oty) with no interpolation (see Fig
ure 8.1 for illustration). 

In order to preserve discontinuities we modify the cost for prior 
probability term as discussed in section 3.4 and use the energy function 
given in Eq. (3.21) that incorporates the line field. The corresponding 
prior term then becomes 

C/(z) = Yl [f^^zs + JCzp] , (8.10) 

^^3 

where /i, 7, e^s, ê p have the same meaning as explained in section 
3.4 in chapter 3. On inclusion of binary line fields in the cost function, 
the gradient descent technique cannot be used since it involves a dif
ferentiation of the cost function. Hence, we minimize the cost by using 
simulated annealing (SA) which leads to a global minima. However, 
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in order to provide a good initial guess and to speed up the compu
tation, the result obtained using the gradient descent method is used 
as the initial estimate for simulated annealing. Although the simulated 
annealing optimization results in global minima, it is computationally 
taxing. In order to reduce the computation Bilbro et al. [201, 202] de
veloped the mean field annealing (MFA) technique that approximates 
the SA, but is based on the deterministic relaxation as opposed to 
stochastic relaxation of SA. It converts the problem of minimization 
on z into the problem of minimization on its mean field. This can be 
done by using a standard gradient descent algorithm and thus allows 
a faster convergence. The computational time is greatly reduced upon 
using mean field annealing which leads to a near optimal solution. 

8.3.1 Zoom Est imation 

We now extend the method to a more realistic situation in which the 
successive observations vary by an unknown rational valued zoom fac
tor. Further, considering an actual lens system for the imaging pro
cess, the numerical image center can no longer be assumed to be fixed. 
The zoom factor between the successive observations needs to be esti
mated during the process of forming an initial guess and while solving 
Eq. (8.9) for the proposed super-resolution algorithm. Thus Dm and 
am in Eq. (8.1) are unknown and they should be estimated from the 
observations themselves. We however assume that there is no rotation 
about the optical axis between the successive observations though we 
do allow a small amount of lateral shift in the optical axis. The im
age centers move as lens parameters such as focus or zoom are varied 
[203, 204]. Naturally, the accuracy of the image center estimation is an 
important factor first in obtaining the initial guess and then for mini
mizing Eq. (8.9) for super resolution purposes. Generally, the rotation 
of a lens system will cause a rotational drift in the position of the opti
cal axis, while sliding action of a lens group in the process of zooming 
will cause a translation motion of the image center [203]. These rota
tional and translational shifts in the position of the optical axis cause 
a corresponding shift in the camera's field of view and the optical cen
ter. In variable focal length zoom lenses, the focal length is changed 
by moving groups of lens elements relative to one another. Typically 
this is done by using a translational type of mechanism on one or more 
internal groups. These arguments validate our assumption that there 
is no rotation of the optical axis in the zooming process and at the 
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same time it stresses the necessity of accounting for the lateral shift in 
the image centers of the input observations obtained at different zoom 
settings. 

We estimate the relative zoom and shift parameters between two 
observations by minimizing the mean squared difference between an 
appropriate portion of the digitally zoomed image of the wide angle 
view and the narrower view observation. This is illustrated in Figure 
8.3. The method searches for the appropriate zoom factor and the lat
eral shift a that minimizes the distance. We do this by hierarchically 
searching for the best match by first upsampling the wide angle obser
vation (block 'A' in Figure 8.3) and then searching for the shift that 
corresponds to a local minima of the cost function. The lower and upper 
bounds for the upsampling process need to be appropriately defined. 
Naturally, the efficiency of the algorithm is limited by the closeness of 
the bounds to the actual solution and the number of steps in which the 
search space is discretized. The search can be greatly enhanced by first 
searching for a rough estimate of the zoom factor at a coarse level and 
slowly approaching the exact zoom factor by redefining the lower and 
upper bounds as well as the finely discretized step size about the best 
match at the coarser level. 

Let us illustrate this with an example. We initiate the search at a 
coarse level for discrete zoom factors (say, 1.4 to 2.3 in steps of 0.1). 
At this point, we need to note that the digital zooming of an image by 
a rational zoom factor T = ^ {m and n are integers) is obtained by 
upsampling the lattice by m and then downsampling it by a factor n. 
We have carried out this using MATLAB routines. We then redefine 
the increment and the bounds that correspond to the two of the near
est estimates of the zoom factor (say, 1.6 to 1.7 in steps of 0.01). This 
procedure is continued till the zoom factor is estimated to a desired 
level of accuracy. Naturally, a greater accuracy in the zoom estimation 
would result in a refined initial guess. However, it has been observed 
that an accuracy upto two digits in the decimal place of the zoom factor 
would be sufficient for accurately aligning the two observations. Fur
ther, the efficiency of the algorithm is greatly enhanced by constraining 
the search for the lateral shift in the image center P of the wide angle 
view image to a small neighborhood of the image center P ' of the nar
rower view image as the lateral shift in the optical axis in the zooming 
process is usually very small (about 2 to 3 pixels). 
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Fig. 8.3. Illustration of zoom and alignment estimation. 'A' is the wide angle view 
and 'B' is the narrower angle view. A is upsampled by a factor of r and B is matched 
to the upsampled A. Find the best value of r and the shift a that offer the best 
match. 

8.4 Experimental Results 

Let us now see how well we can super-resolve the low resolution image 
from observations at different zooms through examples on real data. 
We start by presenting the results corresponding to the known integer 
zoom factors and slowly lead to a more realistic situation in which the 
zoom factors also need to be estimated along with the lateral shifts in 
the optical center. 

8.4.1 Use of Known Zoom Factors 

For this experiment, we have considered three low resolution observa
tions with the zoom factor of r = 2 between images Y^Y^ and r — 4 
between yiYs. Thus the zoom factor between Y<2Yz is also r = 2. Fig
ures 8.4 (a-c) show the input (observed) images of a house Y\ ^Y^ ,y3 
each of size 72 x 96 with a zoom factor of r = 2 between images (a) 
and (b) and also a factor of r = 2 between (b) and (c). 

The automatic gain control (AGO) in the camera automatically sets 
the camera gain in accordance with the amount of light in the pictured 
area and the level of zooming. Since we are capturing regions with dif
ferent zoom settings, the AGO of the camera yields different average 
brightness for differently zoomed observations. Hence in order to com
pensate for the AGC effect, we use the mean correction to maintain 
the average brightness of the captured images approximately the same. 
This is done for the observation Y^ by subtracting its mean from each 
pixel and adding the mean due to its corresponding portion in Y\ (refer 
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(a) (6) (c) 

Fig. 8.4. Observed images of a house captured with three different zoom settings. 

to Figure 8.1). Similarly for the observation Y^ we subtract its mean 
and add the mean of its portion in Yi. We have used mean corrected 
images in all our experiments. 

Figure 8.5(a) shows the zoomed image of the house of size 288 x 384 
pixels obtained by bilinear interpolation of the least zoomed observed 
image Yi of size 72 x 96 pixels with an 144 x 192 pixel sized bilin-
early interpolated Y2 image replacing that part of the interpolated least 
zoomed observed image, and the 72 x 96 sized most zoomed observed 
image replacing those corresponding pixels in interpolated Yi. The cor
responding super-resolved image is shown in Figure 8.5(b). Comparison 
of the figures shows more clear details in the super-resolved image. The 
seam is clearly visible in Figure 8.5(a). Also the branches in the plants 
are more clearly distinguishable in the super-resolved image. It may 
be mentioned that the reconstruction at the peripheral region of the 
image is expected to be inferior to that at the central region as a very 
little information is available for the purpose of super-resolution. This 
confirms to the observation made in [205] that the restoration error 
increases with an increase in the amount of blurring. It has been exper
imentally found that the best results are obtained with the parameters 
/i = 0.0095, 7 = 150, 6 = 25, the decrement factor for temperature in 
the annealing schedule S = 0.999, and the initial temperature To = 3.15 
for the optimization purposes. 

The previous example was highly undersampled. Next we consider a 
case where the observed images shown in Figure 8.6(a-c) have a smooth 
intensity variation. Figure 8.7(a) shows the successive bilinearly in
terpolated girl image 'Nidhi' and 8.7(b) displays the corresponding 
super-resolved image. Again notice the seam and also the blockiness 
on the edges of hair-band in Figure 8.7(a). Note that the central part 
of both the images in Figure 8.7 are identical. The available highest 
resolution observation has been copied at these places. We expect to 
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(6) 

Fig. 8.5. (a) Zoomed house image formed by successive bilinear expansion, (b) The 
super-resolved house image. 

see improvement as we move away from the center. We do notice some 
improvement near the hps and the right eye of Nidhi in Figure 8.7(b). 

The super-resolved image corresponding to the entire scene Yi con
sists of super-resolved image due to Y2 which in itself has the actual 
observation 1̂ 3. In this case Yi^Y2 and ^3 correspond to Figure 8.6(a), 
(b), and (c) respectively. For this experiment, we found discontinuities 
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(a) (6) (c) 

Fig. 8.6. Observed images of the girl Nidhi captured with three different zoom 
settings. 

were better preserved by considering three different threshold values 6 
for the three super-resolution regions, and the parameters used were 
9YI = 70 for the super-resolution region of Yi only, 6Y2 = 10 for the 
super-resolution region of Y2 only, and 6Y^ = 5, for the super-resolved 

region Y^. Here Oi = O2 ~ 0 defines the threshold for detecting the 
presence of an edge as defined in Eqs. (3.19 and 3.20) in chapter 3. The 
weightage for smoothness term JJL was chosen as 0.08 and the constant 
7 was selected as 10. The justification for selecting different thresholds 
for different regions is that one has relatively less information about 
the peripheral regions, and hence the restoration tends to be smoother 
at these regions. The choice of lower threshold values tries to prevent 
oversmoothing. The values of 5 and TQ were kept the same as it was in 
the previous experiment. 

We also experiment to find out what would happen if the line fields 
are dropped so that a gradient descent method can be used resulting in 
a much faster computation. The super-resolved Nidhi image using the 
gradient descent optimization scheme is shown in Figure 8.8. A step 
size of 0.005 was chosen for this experiment. As expected the super-
resolved image looks smooth. However, it does not affect too much as 
the imaged object does not have too much of high frequency details. 

We show results of experimentation for another scene having ar
bitrary textures (with significant amount of high frequency content). 
Figures 8.9(a-c) show the observations taken at different zooms. The 
scene is highly undersampled and severely aliased. The results obtained 
for this case are shown in Figures 8.10(a) and 8.10(b). It can be clearly 
seen that the estimated super-resolved image appears sharper. The 
trees in the background definitely do. Also, the seam present in the 
interpolated image 8.10(a) is absent in the super-resolved image. The 
bush in front of the house also appears well in 8.10(b). However, do 
note that there is a localization error in both the images while combin-
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(6) 

Fig. 8.7. (a) Zoomed Nidhi image using successive bilinear expansion, (b) super-
resolved Nidhi image. 

ing the three views. This is due to the fact that the relative zoom and 
the ahgnment were assumed to be known in this experiment. Clearly, 
the image alignment was not correct and it will be shown in subsequent 
section that the zoom and alignment estimation takes care of the above 
problem. 

The initial estimates for the high resolution image in all the ex
periments discussed in this subsection were chosen to be the output 
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Fig. 8.8. Super-resolved Nidhi image using the gradient descent optimization. 

obtained by using the gradient descent technique to speed up the com
putation. Comparison of these results with the results of successive 
interpolation demonstrates the usefulness of the proposed approach. 
However, the restoration tends to be a bit smooth near the periphery. 
This phenomena is expected as we have used only three observations 
and the peripheral region has been upsampled by a factor of 4 x 4. 
The effect of over smoothing is quite visible in the house image where 
the high frequency region corresponding to the plants appears to be 
smoothened. However, the picture of Nidhi (Figure 8.7(b)) when super-
resolved, does not show this effect prominently. The result does appear 
to be visually more pleasant. The simulated annealing optimization al
gorithm used here is slow and in order to decrease the computation 
time, we have also implemented the mean-field annealing optimization 
(MFA). The recovered super-resolved Nidhi and house images using 
MFA are shown in Figures 8.11(a) and (b) respectively. These results 
compare quite favorably with the results given in Figures 8.7(b) and 
8.5(b) despite a substantial reduction in computation time. 

All the above results have been obtained with input observations at 
known, integer zoom factors. It is also assumed that the lateral shift 
in the center of the image during the zoom process is known. Now we 
relax these assumptions. 
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(a) (6) (c) 

Fig. 8.9. Observed images of a scene captured again with three different zoom 
settings. 

^̂ ^̂ >̂vS;; 

• ^ ' ' % 

Fig. 8.10. (a) Zoomed scene image formed by successive bilinear expansion, (b) 
super-resolved scene image. 



190 8 Use of Zoom Cue 

(6) 

Fig. 8.11. Super-resolved (a) Nidhi, and (b) house image using mean field opti
mization. 

8.4.2 Experiments with Unknown Zoom 

Now we present the results of the more general case in which the zoom 
factors also need to be estimated. We do this using the method de
scribed in the section 8.3.1. Figures 8.12 (a-c) show the input images 
Yi, y2, Ys each of size 128 x 128 pixels. We again account for the varia
tion in the average intensity due to the automatic gain control feature 
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(a) (6) (c) 

Fig. 8.12. Observed images of Nidhi captured with three different unknown zoom 
settings. 

Fig. 8.13. Image obtained by aligning images Y2 and Y3 given in Figure 8.12. 

of the camera using the mean correction in order to maintain the same 
average brightness of the captured images. The method described in 
section 8.3.1 asks for an appropriate interpolation technique (digital 
zooming) for the process of aligning the images. It has been observed 
that a nearest neighbor interpolation technique would perform quite 
effectively for accurately estimating the zoom factor. However, the es
timate of the lateral shift obtained in the process may result in an error 
upto a few pixels due to the inherent repetitive nature of the nearest 
neighbor interpolation algorithm. The use of a bilinear or bicubic inter
polation technique in the proposed alignment algorithm would estimate 
accurately not only the zoom factor but also the lateral shift that the 
image center undergoes in the process. Considering the accuracy of 
the results and the computational efficiency, the bilinear interpolation 
technique is found to be quite appropriate for zoom estimation. 

Using a bilinear interpolation in the proposed algorithm, a zoom 
factor of r = 1.72 and a lateral shift of a = (3, —2) pixels were estimated 
between the observations 8.12 ((b) and (c)). These two observations are 
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aligned by first interpolating (b) by the factor obtained and by replacing 
the appropriate section of this interpolated image by the observation 
(c). The image shown in the Figure 8.13 is obtained by aligning (c) 
on (b) using the estimated zoom factor and the lateral shift in the 
image center. We observe that the wide angle view (image (b)) has 
been aligned quite accurately with the zoomed observation (c). There 
is no apparent distortion in Figure 8.13 due to the merging process as it 
was evident in Figure 8.10. We follow the same procedure and align the 
image obtained in the above process and the other observation (a). A 
zoom factor of 2.14 and a lateral shift of (3, —2) pixels were estimated 
in this case. The aligned image using bilinear interpolation is shown 
in Figure (8.14(a)). We again observe that the input images have been 
accurately aligned. 

(a) (b) 

Fig. 8.14. (a) Zoomed Nidhi image formed by using successive bilinear expansion, 
(b) super-resolved image using the gradient descent method when the zoom factors 
axe not known. 

The image as obtained above is used as an initial guess of the high 
resolution intensity field Z. Starting from this initial estimate, we try 
to reduce the cost given in Eq. (8.9) using the gradient descent al
gorithm and obtain the super-resolved image. We use the MATLAB 
routine Hmresize' for decimation process. As before, the choice of dec
imation in the gradient descent algorithm has to be made considering 
the computational burden and the quality of the output. A bicubic 
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decimation would lead us to a better quality of the result and a near
est neighborhood algorithm would result in a blockiness effect in the 
image. It has been observed that bilinear interpolation would be the 
best choice for decimation considering both the computational time 
and the quality of the result obtained. The step size for the gradient 
descent algorithm needs to be adjusted appropriately to obtain a good 
quality output. It has been experimentally found that the best results 
are obtained with a step size of 0.01 for the case of Nidhi image. The 
resultant super-resolved image is shown in the Figure 8.14(b). We do 
observe a resolution enhancement in this case. A few areas of interest in 
the image would be the region around the eyes and nostrils in the image 
where the zoom-based algorithm outperforms the traditional bilinear 
interpolation technique result of which is given in Figure 8.14(a). Also 
note that since the performance of the gradient descent algorithm was 
quite satisfactory, no further attempt is made to improve the accuracy 
through the use of line fields. 

(a) (b) (c) 

Fig. 8.15. Observed images of a flower captured with three different (unknown) 
zoom settings. 

We now present the results of this method for scenes having a sig
nificant amount of high frequency content. Figures 8.15 (a-c) show the 
observations taken at different zooms. Since the zoom levels were un
known, they were first estimated using the hierarchical cross-correlation 
technique across the scale, and were found to be ri — 1.33 between 
the observations (a) and (b) and rir2 = 2.89 between the observa
tions (a) and (c). A lateral shift of (3 , -2 ) and (6,-10) pixels in the 
optical centers, respectively, for the above two cases, were detected. 
We can observe that the super-resolved image (see Figure 8.16(b)) ap
pears sharper as compared to the one obtained by using the bilinear 
expansion (see Figure 8.16(a)). A few areas of interest where such an 
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(b) 

Fig. 8.16. (a) Zoomed flower image formed by using successive bilinear expansion, 
(b) super-resolved image using the gradient descent method. 
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enhancement can be observed would be the portion of the image con
taining a group of petals towards the periphery. One such region has 
been highlighted by a rectangular box in the Figure. These results once 
again demonstrate the efficacy of the super resolution algorithm for a 
wide range of data sets even for the case of fractional zoom. A step size 
of 0.01 is used in the gradient descent algorithm. We again note as in 
the previous case, since the performance of the gradient descent was 
quite satisfactory, no further attempt is made to improve the accuracy 
through the use of discontinuity preserving line fields. 

8.5 Learning of Priors from Zoomed Observations 

In the previous section we have selected the MRF model parameters 
in an ad-hoc fashion. This increases the computational burden, as one 
needs to adjust the parameters on trial and error basis. This is typically 
a problem faced in such type of MAP-MRF formulation. What are 
the correct MRF parameters? We observe that we have a part of the 
super-resolved image already available in the form of most the zoomed 
observation. It will be ideal to recover the parameters from this most 
zoomed observation and use it while super-resolving the entire scene. 
This is exactly what we discuss in the rest of this chapter. 

The super-resolution restoration problem is known to be ill-posed. 
Thus obtaining a desirable solution requires a reasonable assumption 
about the nature of the true image. Once the prior model for the true 
image is chosen, the solution obtained depends on the correctness of 
model parameters. A proper choice of model parameters leads to a 
better solution and alleviates the problems due to ill-posedness. Till 
now the prior has been modeled as an MRF and the model parame
ters were selected on an adhoc basis for minimizing the cost function 
by adjusting the parameters on a trial and error basis until a better 
solution is obtained. A more practical and challenging situation would 
be one in which these model parameters are learnt from the given ob
servations themselves. We now concentrate on the problem of learning 
the priors for super-resolution imaging of a scene from observations 
at different camera zooms. We model the high resolution image as a 
homogeneous Markov random field. Through the most zoomed obser
vation, we get to view a part of the high resolution field. Hence we 
learn the corresponding field parameters for the model from this high 
resolution observation assuming a homogeneity of the scene and this 
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prior is later used to super-resolve the rest of the scene captured at a 
lower resolution. 

As discussed in chapter 2, a few researchers have also attempted 
to solve the super-resolution problem by using the learning based ap
proaches using a set of training images [97, 98, 99, 100, 101, 102]. The 
advantage of learning based methods is that they provide a very natu
ral way of obtaining the characteristics of the high resolution image . 
An ideal learning based method should make it possible to learn very 
complex scenes. The problem of learning is very tricky, since it should 
preserve the features of the original high resolution image from a set of 
training images. Also, it is not obvious what features of the training set 
should be learnt at the high resolution. By choosing a proper feature 
set from training images, the quality of the results obtained can be 
improved. Here we use a different type of cue for parameter learning, 
where we make use of the given observations themselves to learn the 
parameters and not the training set. 

The estimates of the MRF parameters are obtained using a maxi
mum pseudo-likelihood (MPL) estimator in order to reduce the com
putations avoiding the computation of partition function. Although we 
use the MAP-MRF approach for super-resolution, our work is funda
mentally different from those of [50, 120] in the sense that we learn the 
field parameters on the fly while the previous works assume them to 
be known. Further, all previous methods use observations at the same 
resolution. 

Since we are learning the MRF parameters from the given data, let 
us briefly review the status of research in this area. In [206] authors 
use Metropohs-Hastings algorithm to estimate the MRF parameters. 
Lakshmanan and Derin [207] have developed an iterative algorithm 
for MAP segmentation using an ML estimate of the MRF parameters. 
Nadabar and Jain [208] estimate the MRF line process parameters us
ing geometric CAD models of the objects in the scene. Potamianos and 
Goutsias [209],[210] propose the estimation of partition function by ap
proximating the Gibbs random field (GRF) by a mutually compatible 
Gibbs random field (MC-GRF) through the use of Monte-Carlo simu
lations. Their work concentrates on binary valued, second order Gibbs 
random fields. 

One of the primary application of MRF modeling is in textured 
image analysis and synthesis. Zhu et al. [211] use the maximum entropy 
principle to derive a probability density function for the ensemble of 
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images with the same texture appearance. This density function has 
a form of Gibbs distribution and the estimated GRF parameters are 
used for texture synthesis and analysis. They extend their work in [212] 
and describe a stepwise algorithm for selection of filter banks used to 
extract the features for texture synthesis purposes. Zhu and Liu [213] 
propose a method for fast learning of Gibbsian fields using a maximum 
satellite likelihood estimator which makes use of a set of pre-computed 
Gibbs models called "satellites" to approximate the likelihood function. 

8.6 Estimation of MRF Prior 

We assume that the high resolution image z is represented by an MRF. 
Thus, we have 

p ( Z = z ) - ^ e - ^ ( ^ ' ® ) , (8.11) 

where z is a realization of Z, and Zp is the partition function. Here 0 
represents the parameter set that defines the MRF model and C/(z, 0 ) 
is the energy function given by 

C / ( z , 0 ) - 5 ^ K ( z , 0 ) . (8.12) 

14(z, 0 ) denotes the potential function associated with a clique c and 
C is the set of all cliques. Unlike in previous chapters, we explicitly 
use the parameterization 0 in the potential function ^^(z, 0 ) . The 
clique c consists of either a single pixel or a group of pixels belonging 
to a particular neighborhood system. In this study, we consider either 
the symmetric first order neighborhood consisting of the four nearest 
neighbors of each pixel or the second order neighborhood consisting 
of the eight nearest neighbors of each pixel. In particular, we use the 
following two and four types of cliques shown in Figure 8.17. This is a 
simpler version of the cliques shown earlier in Figure 3.3. In the figure, 
Pi is the parameter specified for clique c^ The Gibbs energy prior for 
z can now be written as 

P ( z , 0 ) = - ^ e x p { - C / ( z , 0 ) } . (8.13) 

Depending on whether we choose a first order or a second order neigh
borhood to model the field, the overall energy function for the image 
can be given as 
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(a) (b) 

Fig. 8.17. Cliques used in modeling the image, (a) First order, and (b) second order 
neighborhood. 

iV-2 N-2 

C/(z, 0) = E E {/?i[(̂ ,̂̂  - ^kHi? + i^Ki - Zk^i^if] 
k=l 1=1 

for two parameters [y5i,/?2]̂  or 

N-2 N-2 

k=l 1=1 

+ p2[{Zk,l - Zk-l^if + {Zk^i - /̂c+1,0̂ ] 

+ ^z[{Zk,l - ^k-lHl) + i^k.l - Â;4-l,/-l) ] 

+ pA[{Zk,l - Zk-l^i^lf + {Zk,l - Z/c+l,Hi)̂ ]} 

for four parameters [̂ 1,̂ 27^^37 A]- Thus 0 = [̂ 01,̂ 02]̂  represents the 
parameter vector for the first order and 0 = [P\^J32^^Z'>PAY for the 
second order neighborhoods, respectively. We use these particular en
ergy functions in our studies in order to regularize the solution using 
the estimated prior. 

We realize that in order to enforce the prior information while es
timating the high resolution image z, we must know the values of the 
field parameters 0 . Thus the parameters must be learnt from the given 
observations themselves. However, we notice that a major part of the 
scene is available only at a low resolution. The parameters of the MRF 
cannot be learnt from these low resolution observations as the field 
property is not preserved across the scale or the resolution pyramid 
[127]. There is only one observation YK where a part of the scene is 
available at the high resolution. Hence, we use the observation YK to 
estimate the field parameters. The inherent assumption is that the en
tire scene is statistically homogeneous and it does not matter which 
part of the scene is used to learn the model parameters. 

The estimation of the model parameters is, however, a non-trivial 
task. As already discussed, a large body of literature exists on how to 
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estimate the MRF parameters. Most of these methods are computation
ally very expensive. We adopt a relatively faster but an approximate 
learning algorithm, known as the maximum pseudo-likelihood (MPL) 
estimator [206] to estimate the model parameters. The estimation pro
cedure is briefly explained here. 

The parameter estimation formulation for the prior model is based 
on the following ML optimality criterion 

0 = arg m a x P ( Z = z | 0 ) . (8.14) 

The probability in Eq. (8.14) can be expressed as 

P(Z - z|0) - ^M-UJ^m (. 15̂  

In Eq. (8.15) summation is over all possible realizations of Z. Prom 
a computational point of view, handling Eq. (8.15) is practically not 
possible. Hence to overcome the computational difficulty and to make 
the parameter estimation problem tractable, we approximate Eq. (8.15) 
using the pseudolikelihood function (see [214]). 

p{Z = Z | 0 ) ^l[P{Zj,^i = Zk^i\Zm,n - Zm^n.e), (8.16) 
k,l 

where (m, n) € ry(fc, /) form the given neighborhood model (the first or
der or the second order neighborhood as chosen in this study). Further 
it can be shown that Eq. (8.16) can be written as 

p(z=z|0)^n 
k,l 

exp{-Ec6cK(2fc ,^Q)} 

[Ezfc,,6B, {exp [ - Ec€C Vc{Zk,l, ©) ]} 
(8.17) 

where Bz is the set of intensity levels used. Considering the fact that 
the field z is not available for learning, and that only YK is available, 
the parameter estimation problem can be recast as 

0 = arg irmxPiRKZaj, = YKI®)- (8.18) 

We maximize the log likelihood of the above probability by using 
Metropolis-Hastings algorithm as discussed in [206] and obtain the pa
rameters. 
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8.7 Development of an Alternative Prior 

Learning of MRF model parameters allows one to obtain the parame
ters depending on the choice of clique potentials. We have considered 
here the clique potential as a function of a finite difference approxi
mation of the first order derivative at each pixel location. Thus the 
learned MRF parameters specify the weightage for smoothness of the 
super-resolved image. Although the MRF model for prior constitutes 
a popular statistical model and captures the contextual dependencies 
very well, the computational complexities for learning these models 
are high as one needs to compute the partition function in order to 
estimate the true parameters. The computational burden can be re
duced by using a scheme such as the maximum pseudo-likelihood as 
used in our studies. But to obtain the global minima we still need to 
use a stochastic relaxation technique, which is computationally very 
demanding. Also the pseudolikelihood is not a true likelihood except 
for the trivial case of null neighborhood.This motivates us to use a 
different but a suitable prior. We can consider the linear dependency 
of a pixel in a super-resolved image to its neighbors and represent the 
same by using a simultaneous autoregressive (SAR) model and use this 
SAR model as the prior. Although this becomes a weaker prior the 
computation is drastically reduced. 

Let z{x) be the gray level value of a pixel at site x "= ihj) i^ ^^ 
N X N lattice, where (ij) = 1,2, • • • iV. The SAR model for z{x) can 
then be expressed as [215] 

<X)= E 6 )W^(x + ^) + V^^(x), (8.19) 

where J\f^ is the set of neighbors of pixel at %. 0(i9), i9 G Af^ and <; 
are unknown parameters and n(.) is an independent and identically 
distributed (i.i.d) Gaussian noise sequence with zero mean and vari
ance unity. Here <; is the strength of the white noise sequence which, 
when passed through a system having an autoregressive model with 
parameters 0 , produces the desired sequence z. 

The use of linear autoregressive models is very popular in digital 
signal processing. Much details can be learnt from a text book on signal 
processing (for example, [216]). We mention only a few past work on 
2D signal processing. 

We suggested in the previous section the use of a homogeneous MRF 
to model the high resolution field for learning purposes. However, the 
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accurate learning of MRF parameters is a computationally tedious job. 
The computation can be drastically reduced if the model is restricted 
to a linear one such as a SAR [215], although the corresponding prior 
becomes weaker due to the restriction imposed on it. We circumvent 
this weakness by learning a larger parameter set by considering a larger 
neighborhood size. The ML estimates of the SAR model parameters 
are obtained using the iterative estimation scheme as the loglikelihood 
function is nonquadratic. 

Now we discuss in brief about the use of SAR models in image 
processing. Kashyap and Chellappa [215] estimate the unknown pa
rameters for the SAR and the conditional Markov (CM) models and 
also discuss the decision rule for the choice of neighbors using syn
thetic patterns. Authors in [217] use a multiresolution simultaneous 
autoregressive model for the texture classification and the segmenta
tion. They derive a rotation invariant SAR model for the texture clas
sification. Multispectral SAR and MRF models for modeling of color 
images and the procedure for parameter estimation are considered in 
[218]. As discussed in [97], the richness of the real world images would 
be diflBcult to capture analytically. This motivates us to use a learning 
based approach, where the parameters of the super-resolved image can 
be learnt from the most zoomed observation and hence can be used to 
estimate the super-resolution image for the least zoomed entire scene. 
This method of learning should work well as the parameters are learnt 
from the super-resolved image itself, as a part of it is available as the 
most zoomed image. However, the belief is that the same parameters 
can be used while super-resolving the entire scene. 

The number of pixels used in a neighborhood system increases with 
a larger neighborhood structure. This helps in capturing the statistical 
dependency of a pixel on its neighbors in a better way. Thus we make 
use of a larger neighborhood for learning the parameters. While using 
a fifth order neighborhood we require a total of 24 parameters 0 ( i , j ) 
as shown in Figure 8.18. In order to reduce the computations while 
estimating these parameters we use a symmetric SAR model where 
0{'d) = 0{—'d). It may be mentioned here that we do not discuss the 
choice of appropriate order for the neighborhood system and the choice 
of number of parameters for optimum results. 

One of the characteristics of an image data is the statistical de
pendence of the gray level at a lattice point on those of its neighbors. 
This statistical dependency is now characterized by using a SAR model 
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Fig. 8.18. The fifth order neighborhood for a pixel at location (0,0). 

where the gray level at a location is expressed as a linear combination 
of the neighborhood gray levels and an additive noise. Thus we can use 
a SAR model as a prior instead of an MRF prior where the computa
tional burden is much less. We estimate the SAR model parameters by 
considering the image as a finite lattice model and using the iterative 
scheme as given in [215]. We model the most zoomed image as a SAR 
model and obtain the least squares estimate to initialize the parame
ters. These initial estimates are then used in the iterative algorithm to 
obtain the final parameters. 

8.8 High Resolution Restoration 

8.8.1 Restoration using M R F Prior 

Having learnt the MRF model parameters, we now try to super-resolve 
the entire scene. In order to do that we use the MAP estimator to 
restore the high resolution field z. Given the ensemble of images at 
difi'erent resolutions the MAP estimate of z is given by 

z = arg maxP(z I y i ,y2 , • • • , y / ^ , 0 ) . (8.20) 

Note that we include the learnt parameters 0 in the MAP estimator. 
This is the primary difference between this equation and Eq. (8.3). The 
scene to be recovered has been modeled as a MRF. Thus using the data 
fitting term and the prior term it can be easily shown that the final 
cost function is obtained as (similar to Eq. (8.9)) 

e = 

K 

X X^ \\ym - DmRmZam f + E ^^(z, 0 ) | • (8.21) 
L m=l ceC 
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where A is a regularization parameter. Since the model parameter set 0 
has already been estimated, a solution to the above equation is, indeed, 
possible. The above cost functions is convex and is minimized using 
the gradient descent technique. The initial estimate obtained by 
using the successive bilinear expansion as already discussed. 

8.8.2 Restoration using S A R Prior 

Instead of using the MRF prior, we may use the SAR prior for a faster 
computation. With the SAR parameters estimated as discussed in sec
tion 8.7 we would like to arrive at a cost function which has to be 
minimized to super-resolve the observations. As before, we use the reg
ularization based approach which is quite amenable to the incorpora
tion of information from multiple observations with the regularization 
function chosen from the prior knowledge of SAR model. Now we use 
a simple linear dependency of a pixel value on its neighbors as a con
straint using the SAR model for the image to be recovered. Using a data 
fitting term and a prior term one can easily derive the corresponding 
cost function to be minimized as 

e = A f^ | | y ^ - DmRm^am \? + E f ^ W " E &i^)<X + ^ ) ) • 
m=l X \ •deNx J 

(8.22) 
2 

Here A is a regularization parameter which is now proportional to ^ 
where <;̂  is the error variance for the SAR model (see Eq. (8.19)). This 
cost function is also minimized using the gradient descent with initial 
estimate as ẑ )̂ as discussed in restoration using MRF prior. 

8.9 Experiments with Learnt Prior 

We demonstrate the usefulness of the proposed technique to recover 
the super-resolved image from observations at different zooms through 
learning of model parameters. 

Initially we experimented on simulated data. A number of images 
were chosen from the Brodatz's album. We observe an image at three 
levels of zoom ri = r2 = 2. Figures 8.19(a-c) show one such set of 
observations, where Figure 8.19(a) shows the entire image at a very 
low resolution, (b) shows one-fourth of the region at double the resolu
tion, and (c) shows only a small part of Figure 8.19(a) at the highest 
resolution. 
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(a) (6) (c) 

Fig. 8.19. (a-c) Observed images (DIO) of a texture captured with three different 
zoom settings (ri = 2 and r2 = 2). 

We use a first order MRF to model the intensity process in Fig
ure 8.19(c). The estimated values of the parameters were /3i = 6.9 
and ^2 = 28.8. These parameters were estimated using the Metropolis-
Hastings algorithm by choosing the initial values of the parameters as 
unity. We observed the convergence of the parameter estimation algo
rithm for most of the cases within 1000 iterations, although there were 
convergence difficulties for just a few of the images we considered. For 
example, the algorithm did not converge for the Nidhi image shown in 
Figure 8.6(c). Using the learnt parameter set, we now super-resolve the 
entire scene in Figure 8.19(a) to obtain the Figure 8.20(b). Compare the 
result to that obtained using a simple bilinear zooming operation given 
in Figure 8.20(a). We notice that both the images are quite blurred 
near the periphery, as expected. However, the interpolated image is 
too blurred to infer anything about the texture. For the super-resolved 
image, the restoration upto a zoom factor r = 2 is quite good. For 
a zoom factor of r = 4, one needs to reconstruct 16 pixels for each 
observed pixel near the periphery, which is clearly a difficult task. A 
degradation in the reconstruction is, thus, quite expected even in the 
estimated high resolution image. We then use the SAR model as an 
alternative prior for super-resolution. We used a symmetric fifth order 
neighborhood for SAR modeling. The learnt parameters from the most 
zoomed observation (Figure 8.19(c)) are used to enforce the dependency 
of each pixel on its neighbors in the entire scene to be super-resolved 
by using the prior. For most of the images convergence of the SAR pa
rameter estimation algorithm was obtained within 10 iterations and no 
convergence problem was ever faced. The super-resolved image using 
the estimated parameters is shown in Figure 8.20(c). We can clearly see 
that the super-resolved image is sharper with better details than those 
obtained either with the bilinear interpolation or the super-resolved 
image using the MRF prior shown in Figures 8.20(a) and 8.20(b), re
spectively. In order to highlight the improvement in resolution achieved, 
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^ I 
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Fig. 8.20. (a)Zoomed texture image formed by successive bilinear expansion. Super-
resolved texture image using the learnt (b) MRF prior, and (c) the SAR model. 

a rectangular region is marked in all the three results. Note that the 
edges come out more sharply in the MRF based method compared to 
the bilinearly interpolated image. However, these edges are even better 
recovered using the SAR prior. The reason for the better restoration 
using the SAR approach is that we are using a larger neighborhood 
with more number of parameters for the model representation. This is 
able to capture the prior better than the MRF model as we are con-
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strained to use a very few cliques during the MRF modeling for reasons 
of computational difficulties in learning these model parameters. 

i i t? ' ' ••#•• ^ . 

Hrf-r-.y. £. r^-*^ 

(a) (6) 

(d) (e) 

Fig. 8.21. (a, b) Observed images (D112) of another texture captured with two 
different zoom settings (r = 2), (c) Zoomed texture image formed by successive 
bihnear expansion. Super-resolved image for a zoom factor of r = 2 using (d) MRF 
prior, and (e) SAR model parameters. 

In order to demonstrate the performance of these algorithms for 
a zoom factor of 2, we now consider two simulated observations with 
r = 2 shown in Figure 8.21 (a, b). A first order MRF model was used to 
capture the texture in Figure 8.21(b) and the estimated MRF param
eters were ^i = 29.96 and /32 = 38.19. The bilinearly zoomed image is 
shown in Figure 8.21(c). The super-resolved image obtained using the 
MRF based prior and the SAR prior are given in Figures 8.21 (d, e), re
spectively. As can be seen the high frequency details are restored well in 
the super-resolved images. The bilinearly interpolated image (see Fig
ure 8.21(c)) definitely appears blurred compared to the restored images 
using the proposed approach (see Figures 8.21(d, e)). The result ob
tained using the SAR prior is better than that of the MRF prior due 
to the choice of a larger neighborhood. 

Results for another set of observed textures, shown in Figures 
8.22(a-c) are given in Figures 8.23(b) and 8.23(c). The zoomed image 
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(a) (6) (c) 

Fig. 8.22. (a-c) Observed images (D2) of yet another texture captured with three 
different zoom settings. 

(6) (c) 

Fig. 8.23. (a) Zooming by successive bihnear expansion. Super-resolution restora
tion of images given in Figure 8.22 using (b) learnt MRF prior, and (c) the SAR 
model. 
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(a) (6) (c) 

Fig. 8.24. (a-c) Observed texture (D12) at three different zoom settings. 

(6) (c) 

Fig. 8.25. (a) Bilinearly zoomed texture image, (b) The super-resolution restoration 
using first order MRF prior, (c) Restoration using a second order neighborhood 
structure. 
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using the standard bilinear interpolation is shown in Figure 8.23(a). 
The super-resolved images are definitely sharper than the zoomed im
age. Although the edges at the outer region are not as sharp as it is in 
the center, they are a lot more discernible than those in the interpolated 
image. 

We also tested the algorithm for MRF based prior using four pa
rameters instead of just two cliques. Result of the same for a set of 
observed textures, given in Figures 8.24(a-c), is given in Figure 8.25. 
Once again, a comparison with the corresponding zoomed image in 
Figure 8.25(a) brings out a similar conclusion that upto a zoom factor 
r = 2 the results of the proposed super-resolution scheme is very good, 
but beyond that the quality of restoration starts degrading. This again 
conforms to the observation that the restoration error increases with 
an increase in the amount of blurring [205]. However the mean squared 
error (MSB) comparison for the proposed approach and the successive 
bilinear interpolated image when measured with respect to the original 
image showed a significant decrease in all of the above experiments as 
given in Table 8.1. Further, a comparison between the super-resolved 
images presented in Figure 8.25(c) and Figure 8.25(b) where the prior 
term uses a second order neighborhood shows that there is no signif
icant perceptual improvement with an additional order introduced in 
the prior term. Our experience suggests that the improvement is very 
gradual as the order of the MRF parameterization is increased. Ide
ally one requires a large number of cliques to learn the prior. However, 
the computation goes up drastically while learning the scene prior. 
Hence we refrain from using a neighborhood structure beyond the sec
ond order. One does not have a similar difficulty while using a larger 
neighborhood structure in the SAR model based approach. 

In order to quantify the the improvement in spatial resolution using 
the proposed approaches, we compute the mean squared error (MSE) 
of the reconstructed image with respect to the original high resolution 
image. The result is summarized in Table 8.1 for all the above four 
simulation experiments for two different levels of zooming, namely r = 2 
and r — A. From the table we observe that the use of MRF prior helps 
us in reducing the MSE by at least 30% as compared to the bilinear 
interpolation. The use of SAR prior helps us to further reduce the 
MSE by another 5 — 25%. This justifies the use of learnt priors in 
super-resolving the image. 
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Table 8.1. Comparison of MSE for Bilinear interpolation (BI), MRF Approach and 
SAR Approach. 

Image 

DIO 
D112 

D2 
D12 

BI 

0.0153 
0.0097 
0.0159 
0.0488 

r = 2 
MRF SAR 

Approach Approach 
0.0097 
0.0065 
0.0106 
0.0333 

0.0081 
0.0062 
0.0083 
0.0206 

BI 

0.0362 
0.0290 
0.0355 
0.1357 

r = 4 
MRF SAR 

Approach Approach 
0.0264 0.0249 
0.0185 0.0175 
0.0239 0.0209 
0.0759 0.0741 

We now present some results of experimentation on real data. Un
like in the case of simulation experiments, the assumption of the ho
mogeneity is not strictly valid for the real data. However in the ab
sence of availability of any other usable priors, we continue to make 
use of this assumption and show that we still obtain a reasonably good 
super-resolution reconstruction. First we consider a real image which 
has a texture similar to the simulated texture. This corresponds to the 
picture of a bedsheet in a hostel room. Figures 8.26(a-c) show the ob
servations at three different levels of camera zoom. However, the zoom 
levels were carefully chosen such that the relative zoom factors between 
two successive observations are again r = 2. Since we are capturing the 
scene with different zoom setting, we used mean correction to compen
sate for the AGC effect as already described in section 8.4.1. Figure 
8.27(a) shows the zoomed image and the super-resolved images are 
shown in Figure 8.27(b) and Figure 8.27(c), respectively. Comparison 
of the figures show a more clear details in the super-resolved image us
ing the SAR prior (see Figure 8.27(c)) with a slight improvement in the 
super-resolved image using the MRF prior. The blur which is clearly 
visible in Figure 8.27(a) indicating the loss of high frequency details is 
removed in Figure 8.27(c). The MRF parameters for this experiment 
were estimated to be pi = 33.77, ^2 = 60.19. 

Now we consider an example where the scene has an arbitrary tex
ture. We repeat the experiment on the data shown in Figure 8.4. We 
already know what the corresponding super-resolved image (see Figure 
8.5) (b) is. This was obtained by manually fine tuning the MRF param
eters. We want to verify if the learning of the MRF parameters takes us 
to a very similar result or not. The corresponding super-resolved image 
is shown in Figure 8.28(a) and Figure 8.28(b), respectively. Compar
ison of these figures with those given earlier in Figure 8.5 show that 
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(a) (6) (c) 

Fig. 8.26. (a-c) Observed images of a bedsheet captured with three different camera 
zoom settings. 

(a) 

* ' * # . 

9̂  ft 

(6) 

Fig. 8.27. (a) Bihnearly zoomed bedsheet image, (b) Super-resolved bedsheet image 
using the MRF prior, (c) super-resolved using the SAR prior. 
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(b) 

Fig. 8.28. Super-resolved house image for observations shown in Figure 8.4. Use of 
learnt (a) MRF prior, (b) SAR prior. 

we are, indeed, able to learn the texture present in the scene. The 
MRF parameters for this experiment were estimated to be /3i = 9.1, 
^2 = 155.3. Again we note that we have assumed the image texture to 
be homogeneous over the entire scene. The above assumption is, how
ever, not strictly valid for the current example, and hence the quantita
tive improvement in the super-resolution images is not very significant. 
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Fig. 8.29. Super-resolved flower image for the observations given in Figure 8.15 
using learnt MRF prior. 

Nonetheless, we were able to obtain an improved result using this tech
nique. 

Next we consider an example of real data acquisition when the 
zoom levels are totally arbitrary. We continue with the observations 
shown in earlier in Figure 8.15 where the zoom factors are unknown. 
The first order MRF model parameters were estimated to be jSi = 
337.3, /?2 = 463.4 from Figure 8.15(c). The experimental result of 
the super-resolution restoration using the MRF prior is given in Fig
ure 8.29. Compare this to the result obtained in Figure 8.16(b). The 
restoration using the learnt prior is better than what we achieved ear
lier when these parameters were chosen by a trial and error basis. The 
extremities of the petals are now much sharper. Even the blobs at the 
bottom right corner appear more clearly in Figure 8.29 compared to 
the result in Figure 8.16(b). 

8.10 Conclusions 

We have discussed in detail a technique to recover the super-resolution 
intensity field from a sequence of zoomed observations. The resolution 
of the entire scene is obtained at the resolution of the most zoomed 
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observed image which consists of only a portion of the actual scene. 
Initially the super-resolved image is modeled as an MRF, and a MAP 
estimate is used to derive the cost function to be minimized. First 
we used a convex energy function by selecting the finite difference ap
proximation of the first order derivative of the intensity pixel at each 
location for the prior term. This made it possible for us to use the gra
dient descent algorithm for the minimization of the cost. Next, the cost 
function was modified to include the line fields in order to preserve the 
discontinuities. As a consequence the cost was not differentiable and 
we used simulated annealing in order to obtain the global minima. In 
order to reduce the computational burden, MFA was used to optimize 
the solution. We demonstrated that it is, indeed, possible to obtain a 
high resolution image of the scene using zoom as a cue. It is also quite 
clear that the quality of reconstruction depends on how far a point is 
from the optical axis - the quality degrades as one moves away from 
the axis since a very little information is available for super-resolving 
this region. 

We also realize that a part of the scene is available at the highest 
level of resolution while zooming. This motivated us to learn the MRF 
parameters directly from the partial data and we use it as the learnt 
prior while super-resolving the entire scene using the MAP estima
tor. Although the homogeneity (stationarity) assumption is not strictly 
valid for the real images, we have attained reasonably good results even 
for images captured using a real camera. Thus we demonstrate that it 
is possible to obtain a high resolution image of a scene using zoom as 
a cue by learning the parameters from the given observations only. 

Although MRF is the most general prior model as there is flexibility 
in choosing the clique potential, the computational burden involved in 
learning these parameters is high as one needs to consider a much larger 
neighborhood to capture a more accurate local dependency. Also the 
calculation of the partition function is a difficult task. Thus SAR seems 
to be a better prior, though it is a weaker model, as the computational 
complexity is less as compared to the MRF parameter estimation. We 
make amends for this by increasing the neighborhood size while using 
the SAR model. It is always desirable to learn the parameters from the 
given data so that the computational burden can be reduced and the 
actual parameters reflecting the characteristics of the high resolution 
image can be used while super-resolving an image. 



Looking Ahead 

9.1 Summary of Concepts Developed 

High resolution images are often desired in most of the imaging apph-
cations. However the images captured using a commercially available 
camera may not offer the required spatial resolution. Super-resolution 
refers to a technique by which a high resolution image is generated 
from a sequence of low resolution observations. The idea behind super-
resolution is to use the additional information contained in each of the 
observed low resolution images so as to obtain a high resolution image. 
One has to look for intensities of missing pixels in the unknown high 
resolution image by using the pixel intensities of the aliased and blurred 
observations. 

Most of the literature on super-resolution imaging discusses meth
ods that involve taking images of the same scene with subpixel shifts 
among them. The first task in motion-based super-resolution techniques 
involve registration. Thus the difficulty with these techniques is the cor
respondence problem. Obtaining registration with a subpixel accuracy 
is extremely difficult. Also, the motion-based techniques assume that all 
the observations are at the same resolution. These difficulties associated 
with motion-based techniques have been eliminated in this monograph 
by proposing motion-free super-resolution methods. In addition, most 
of the super-resolution techniques do not exploit the structural infor
mation present in the images. We suggest the use of this important 
information while improving the quality of the super-resolved image. 

First we explored the use of relative blur among low resolution ob
servations in super-resolving a scene. We realize that any real aperture 
camera offers a finite depth of field, introducing depth related defocus 
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blur in the observations. By suitably changing the camera parameters, 
we can take multiple observations. We have explained how the obser
vations can be restored at a high resolution and how the dense depth 
in the scene can be recovered simultaneously. The high resolution in
tensity and the depth fields have been modeled as separate Markov 
random fields. The MRF priors were used for regularization purposes 
while obtaining the MAP estimate. The experimental results have been 
very encouraging. 

We have also explored the possibility of using the the photomet
ric cue where the 3D structure preservation is used as a constraint 
while super-resolving the scene. The structure or depth of an object is 
embedded in images in various forms, e.g., texture, shading, etc. We 
make use of the photometric measurements to recover the dense depth 
map of the scene as well as the intensity map. Thus we expand the 
scope of super-resolution to include high resolution depth information 
in a scene, together with recovering the super-resolved intensity values. 
When we capture images of the same scene by varying the positions 
of the light source, new information is available at each pixel to cap
ture the surface properties. We make use of this new information for 
super-resolution. The concept of generalized interpolation in conjunc
tion with appropriate regularization has been used in this study. The 
high resolution intensity field, the surface gradients and the albedo are 
all modeled as separate MRFs to provide the regularizing priors. 

Experiments using real images captured under controlled lighting 
conditions offer quite acceptable results. We further demonstrate that 
the photometric observations need not be free from blur for super-
resolution purposes. We do allow blurred photometric observations in 
our study. An iterative alternate blur and structure recovery algorithm 
has been suggested for blind restoration. 

The super-resolution from photometric observations makes use of 
the generalized interpolation. We demonstrate that the generalized in
terpolation could be used as a basic frame work for image upsampling 
for other cases as well. We consider the principal component analysis of 
a set of training images in a data base. We explain how an image can 
be upsampled by individually interpolating each of the eigenvectors. 
There are certain difficulties using the PCA based interpolation as the 
interpolated eigenvectors are no longer orthogonal to each other. The 
method is intrinsically an interpolation technique and it cannot im
prove the resolution of an aliased image. However, it is quite useful in 
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image restoration if the input image is quite noisy and blurred. Further, 
we demonstrate that if one does not have an access to a high resolu
tion training dataset, the quality of reconstruction could be further 
improved. Although the approach is computationally very efficient, the 
applicability is quite limited to a very specific type of observations such 
as the fingerprint or face images. 

We have also investigated the problem of super-resolving an arbi
trary image from a single observation. A set of high resolution images in 
a database serves as the training pattern. The basic idea is to enhance 
the sharpness of the edge elements while interpolating the image. The 
high resolution edge primitive learnt from the training images, that 
best matches the low resolution edge locally is copied using the wavelet 
decomposition of the image. The edge primitives have been defined over 
a 4 X 4 pixel grid in the low resolution image. Each patch in the low 
resolution image is learnt from different training images. This may re
sult in some blockiness in the reconstructed image. In order to remove 
the blockiness we suggest the use of a smoothness prior during the im
age reconstruction process. The performance of this approach has been 
evaluated through a number of experiments. 

The last topic discussed in the monograph includes a super-resolution 
scheme using zoom as a cue. In this scheme images were captured 
with different but arbitrary zoom factors using a commercially avail
able camera. We enhance the resolution of the least zoomed entire area 
of the scene comparable to that of the most zoomed one. We obtain 
the super-resolution for both known and unknown arbitrary zoom fac
tors. The zoom factors between different observations were estimated 
by using a hierarchical cross-correlation technique. We model the super-
resolved image to be estimated as a Markov random field (MRF) and 
a maximum a posteriori estimation method is used to recover the high 
resolution image. The entire set of observations conform to the same 
MRF but viewed at different resolution pyramid. We observe that a part 
of the scene is available at the highest resolution. Hence we make use of 
the high resolution observation itself to learn the MRF parameters for 
super-resolving the least zoomed entire area of the scene. Inherently we 
assume that the entire scene corresponds to the same MRF and that 
the field parameters can be learnt from any part of the scene. Since 
the estimation of true MRF parameters is a difficult task and the com
putational complexity is high we also explore solving the problem by 
using the simultaneous autoregressive (SAR) prior model. Several ex-
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periments have been carried out using both the simulated as well as the 
real images to illustrate the efficacy of these super-resolution schemes. 

9.2 Future Research Issues 

The research in the area of super-resolution has started about twenty 
years ago. There has been a large body of research in the area of motion-
based super-resolution and the current status in this area has been 
reviewed in chapter 2. However, the research in the area of motion-free 
super-resolution is still at its nascent state. The primary emphasis in 
the book has been to demonstrate that motion-free super-resolution 
is, indeed, possible. A few different methods for high resolution image 
reconstruction have been investigated in this monograph. While doing 
that, a few specific problems and their solutions have been reported 
here. However, there are still a number of issues which need to be 
investigated. 

In this concluding section, we discuss the future directions in which 
the research could progress so that both the theoretical foundations as 
well as practical applications of super-resolution attain a sound footing. 

• The inverse procedure in super-resolution reconstruction requires a 
large computational load as most of the super-resolution algorithms 
are based on iterative techniques. Super-resolution in real time is, 
thus, the need of the hour. To apply the super-resolution algorithms 
to practical real time situations, it is important to develop efficient 
algorithms that reduce the computational cost. Although, some re
searchers have attempted to solve this problem, there are several 
assumptions being made for the image formation process and the 
structure of the scene in order to reduce the computations. All pro
posals studied in this monograph, except the one on PCA based 
reconstruction, are currently unsuitable for even near real-time im
plementation. 

• Learning based super-resolution is quite a new area of research. We 
have developed a learning based super-resolution technique using 
zoom as a cue by modeling the prior as either a SAR model or as 
an MRF. It would be of interest to consider the proper choice of 
neighborhood and the number of parameters for optimal restora
tion of the high resolution field. Also the choice of prior itself is an 
interesting research area. A prior based on the statistical proper
ties such as the histograms of the output of different filters as used 
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in [212] for texture synthesis instead of the usual smoothness con
straint may serve as a better choice. Since the super-resolution is an 
ill-posed problem, a good choice of prior would always be useful for 
the restoration. 
For the wavelet based reconstruction method, it is assumed that the 
low resolution observation is free from blurring. This allows us to 
restrict the search for the best match of the edge primitive from the 
training images at the same scale. In case the input image is blurred, 
then one may have to go down the resolution pyramid of the training 
images to locate the best match. This appears to be a non-trivial 
problem as the scale is unknown and it may not exactly match 
the given levels of scales of the training image after the wavelet 
decomposition. It will be interesting to extend the method to deal 
with scale changes. 
The super-resolution using the zoom cue has been shown to be effec
tive. But a zoom lens camera system has complex optical properties 
and hence it is difficult to model the same. It would be interesting 
to consider a more realistic thick lens model instead of the pinhole 
model used in this study, considering the effects of both photometric 
and geometric distortions, thus extracting the depth field simulta
neously. 
While discussing the image and depth super-resolution reconstruc
tion technique using the photometric cue, we assumed that the 
positions of the light source are known. It would be desirable to 
estimate the source directions also by using the captured images 
and use it to estimate the super-resolved intensity and the depth 
map simultaneously. For example, consider the following problem. 
A light source moves along an arbitrary trajectory and one obtains 
a video of a static object with a low resolution stationary camera. 
Can we track the moving light source, recover the structure and 
super-resolve scene simultaneously? 
In chapter 5 while simultaneously estimating the blur and recover
ing the structure we have assumed the blur to be constant (shift 
invariant). However, in real aperture images, the blur is often shift 
varying due to depth variation in the scene. Thus the blur and the 
shading cue become interdependent. Is it then possible to combine 
the contents of chapter 3 with those of chapter 5 to develop a unified 
frame work under which both the shading and the defocus cues are 
jointly used to achieve an improved super-resolution? 
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• The maximum entropy (ME) principle is applicable to any problem 
of inference with a well defined hypothesis space and incomplete 
data. Super-resolution based on ME is an interesting research area. 
For each pixel we need to estimate the intensities of 4 pixels for an 
upsampling factor of r = 2. We may take all these pixel values to 
be random variables and may attempt to maximize the entropy of 
the estimated field satisfying appropriate constraints. 

• Most of the current super-resolution techniques in the literature are 
studied for gray level images. It is necessary to extend the current 
super-resolution algorithms to real world color imaging systems. 
Although some work has been carried out in color image super-
resolution, a more careful reconstruction method which refiects the 
characteristics of the color is needed. Since the color space is not a 
linear one, handling color space as separate i?, G, B or y, C ,̂, Cr 
planes and super-resolving them individually do not work well. The 
properties of the color space must be considered while restoring the 
colored image. 
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199, 204 
minimum absolute difference, 136 
model based restoration, 51 
model uncertainty, 26 
modulation transfer function, 2 
Monte-Carlo simulation, 196 
motion adaptive relaxation, 20 
motion cue, 8 
motion estimation, 8 
motion field, 8, 18 
motion parameters, 22 
motion vector, 22 
motion-based super-resolution, 8 
motion-free super-resolution, 9, 12 
MPEG coder, 144 
MRF depth model, 47 
MRF scene model, 43 
multi-objective super-resolution, 29 
multi-resolution analysis, 130, 134 
multi-spectral image, 174 
multi-spectral image, 2 
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neighborhood structure, 13 
neighborhood system, 44 
nonlinear quantization, 48 
nonuniform samphng, 71 
Nyquist rate, 6 

observation model, 6 
occlusion, 7 
optical axis, 62, 181 
optical energy, 3 
optical flow, 65, 102 
optical transfer function, 2 
optimal camera settings, 39 
oriented edges, 147 
orthographic projection, 84 
orthonormal vectors, 153 

panchromatic image, 174 
parametric blur identification, 19 
parametric decomposition, 155 
partition function, 44, 47, 196 
pattern recognition, 152 
peak signal to noise ratio, 14 
perspective distortion, 6 
photo-detector, 3 
photometric cue, 9, 70, 75 
photometric measurements, 69 
photometric stereo, 73 
pillbox blur, 35 
pin-hole approximation, 115 
pin-hole equivalent image, 67 
pin-hole model, 34 
plenoptic function, 70 
plenoptic illumination function, 70 
point spread function, 4, 6, 80, 100 
point statistics, 174 
polynomial approximation, 154 
posterior distribution, 52 
posterior energy function, 50 
posterior probability, 49, 179 
potential function, 18, 44 
preconditioned system, 18 
preconditioning, 19 
primitive edge element, 134 
principal component analysis, 30, 150, 

216 
principal planes, 176 
projection coefficients, 149 
projection onto convex sets, 17, 103 

pseudo-Wigner distribution, 39 
pseudolikelihood function, 199 

quantization levels , 3 
quantization noise, 26 

radiance, 70 
random field, 43, 44 
rank deficient, 152 
rational function, 156 
real aperture imaging, 33, 65 
recognition-based super-resolution, 30 
recursive least squares, 20 
reflectance, 70 
reflectance map, 83 
reflectance model, 75, 81, 99 
region of interest super-resolution, 5 
registration, 7 
regularization, 77 
relative motion, 15 
resolution enhancement, 15 
ridgelet, 147 
robust regression analysis, 19 

sampled texture prior, 30 
satellite imagery, 173 
scene structure, 69 
segmentation map, 24 
self shadow, 76 
self-occlusion, 75 
set theoretic approach, 17 
shape from shading, 49, 65, 99 
shape preservation, 69 
shifting property, 16 
shot noise, 4 
signal statistics, 151 
simulated annealing, 50, 140, 181 
simultaneous autoregressive model, 13, 

200 
sine interpolation, 141 
smoothness constraint, 25, 139 
space varying blur, 55 
space varying restoration, 34 
space-frequency representation, 39 
space-time regularization, 27 
space-time resolution, 27 
spatial neighborhood, 43 
spatial interaction model, 43 
spatial resolution, 2 
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spatio-temporal correlation, 26 
spectral resolution, 3, 174 
specularity, 97 
spline interpolation, 77 
statistical homogeneity, 198 
statistical independence, 48 
stereo disparity, 8 
stochastic relaxation, 181 
structure preserving super-resolution, 

70, 71 
structure recovery, 106 
Structure-from-motion reconstruction, 

102 
subpixel shifts, 15 
subsampling, 7 
super-mosaic, 24 
super-resolution albedo, 9 
super-resolution restoration, 5, 48 
super-resolution surface, 39 
super-resolution zoom, 23 
surface emittance, 71 
surface integrability constraint, 10 
surface normal, 73, 104 

temperature variable, 50 
temporal resolution, 3 
temporal resolution , 27 
texture synthesis, 197 
thick lens model, 175, 219 
thin plate spline, 156 
Tikhonov regularization, 16 
total least squares, 17 

total variation, 23, 103, 131 
translational motion, 16 

unconstrained optimization, 75 
uncontrolled motion, 5 
upsampling, 72 

validity maps, 24 
variational approach, 82 
vector field, 74, 75 
vertical edges, 134 
video enhancement, 25 
video surveillance, 26 
view degeneracy, 175 
virtual light source position, 81 
visibility criterion, 8S 
visual surveillance, 1 
voxels, 38 

wavelength, 70 
wavelet coefficients, 11, 129 
wavelet decomposition, 131 
wavelet prior, 139 
wavelet representation, 151 
wavelet transform, 132 
wide angle view, 12 

zoom cue, 12, 68, 173 
zoom estimation, 181 
zoom factor, 177, 181 
zoom factors, 12 
zoom tracking, 175 




